[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
두려워마라.. 1
나는 성기능이 없는 암살자다..
-
정병호~랑나비 2
인스타 펌
-
시발점 확통 6
15개정 교육과정 수능 보는 고2 08년생인데 시발점 확통 개정판 들어야...
-
후기보니까 한달에 10키로 빠졌다는 분도 계시던데
-
근데벌써목요일임 0
흐흐
-
스콧 베센트(미국 재무장관) BTV 발언: 관세로 공황상태 빠지거나 보복하지 말라...
-
지금 달러를 다 판다
-
언매미적생명 순으로 441 (백분위 75 75 96) -> 111 (원점수 80...
-
긴 발목 양말을 신었는데도 벌거벗고 나온 기분이에요...
-
주식 버전
-
1 여권 챙기기 2 숙소 정하기 및 항공권 구매 3 환전 / 트래블로그 or...
-
사탐2개로 에리카,동국약 성적이면(가산점 3프로) 한의대 어디까지 가능한 걸까요?...
-
야 이 바보들아 4
-
얼버기 12
-
일단 상태메시지 수정했고 뱃지도 떼어줌 프사랑 닉만 한 번에 바꿀 거임
-
교재를 안사서요ㅠㅠ
-
출근도장 5
쾅쾅쾅 일하다가 늦게찍음뇨 좋은 하루 되세요
-
왜 이런 이야기를 하는거임? 19수능 출생기도 비연계인데 보기없이 물어봤구만
-
3월 모의고사 수학, 문제 퀄이 좋았다...내 점수 빼고 7
오르비 여러분 안녕하세요! 오랜만이네요. 벌써 3월 모의고사를 본 지 일주일이...
-
윤리랑 지리는 하다가 때려치고 과탐할거같아서 동사정법경제중에 골라주세요 나머지 한개는 사문임
-
연계공부 안 하면 원래 어렵나요? 이번에 나온 이감 모고 1등급 나오고 3덮도...
-
스블 + 뉴런 3
학고 반수 중인데 곧 스블 완강을 하거든요 근데 뉴런 책 사놓은 게 아까워서...
-
2일째 이거만 5번은 읽고 고민 계속했는데 시중에 있는 강의들도 다 들어봤는데...
-
젭알
-
인버스 롱 0
곧 시계경제 도미노 충격여파 온다 꽉 잡고 인버스 롱 올인
-
외롭다 0
그치만 수능은 보고 죽어야겠다 다 망했지만 수능만큼은 아직
-
25시행 중1,고1 국어 시험지 현금 2만원 제공(선착순), 고1 국어, 고2 문학, 고3 특강 분석 문제 배포 1
안녕하세요 나무아카데미입니다. 고1 공통국어, 고2 언매, 고3 특강 분석 기출...
-
현생이 바쁘다
-
기아 맛 갔네 2
이것뭐예요
-
엄기은 이훈식 0
솔텍 할까요 아님 엄기은쌤 피크 들을까요?
-
웃다가울다가하니
-
수특에 관세지문 있음 한번 읽어보시길
-
샹기부 자체가 단순 사실 나열이라 걍 사람이 써도 ai같음
-
학교생활이나 공부법 같은 거 멘토해주는 거고 강사비? 조금 주는 거 같던데...
-
강릉 정박 선박서 '코카인 1.7t'...역대 최대 16
[앵커] 한·미 공조 수사로 강원 강릉 옥계항에 정박한 외국 화물선에서 코카인으로...
-
[단독]현역 군인 매수, 한미훈련 정보 빼낸 중국인 체포 2
현역 군인을 포섭해 군사기밀과 비공개 자료를 수집해 온 중국인 일당 중 행동책이...
-
디른 친구들이 AI 대필 의심스럽다고 검사했을때도 높게 나왔는데, 제가 했을때도...
-
기코 2회독하고 한완수로 한바퀴 더 돌렸는데 입문 n제는 몇권 정도 푸는게 좋을까요?
-
좋은 아침 2
오늘은 다시 열심히 해볼게요
-
아직도 뻐기면 제적시키는 게 맞는듯
-
좋을텐데 0
너의 손 꼭 잡고 그냥이 길을 걸었으면내겐 너뿐인걸 니가 알았으면 좋을텐데
-
관세가 .. 2
이거 뭐노 ㅋㄴㅋㅋㅋㅋㅋㅋ 미국도 드디어 미쳤구만
-
정상화되길 바랐다면 너무 큰걸 바랐던걸까
-
일단 학원에서 신청했는데 학원을 그때까지 다닐지 모르겠어서 교육청가서 중복신청...
-
ㅇㅂㄱ 3
좋은아침이에요
-
D-224 0
영어단어 영단어장 day 12(480단어) 모르는 단어만 복습 +day 4 추가...
-
자러감 3
학교 좀만 늦게 가야지
-
출근 1
이따 봅시다
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!