[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
폰 바꾸면 6
폰 반납하는게 나을까? 할인 많이된다는데
-
팥붕 vs 슈붕 8
당장 골라줘.
-
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다 팔로우해주시면 뻘글 없이 맛있는...
-
뉴런 빨리 끝내려하는데 26 뉴런 볼륨이 너무 커서요 짧은 작년걸로 돌리고 싶은데...
-
나도 폰바꿀듯? 2
S23울트라->S25울트라로 업그레이드
-
중1때 박근혜 탄핵당하는거 실시간으로 봤었는데 윤석열 탄핵 당하는것도 볼려나
-
낼 탄핵될 거 같은데
-
햄 아이폰으로 바꿀까? 11
지금은 S23울트라쁠라스 쓰는중
-
주변 소리가 안들린 적이 있나요
-
하이라이트만 볼까
-
적어도 기깔나는 시 한편 소설 종이쪼가리 하나는 내 손에 쥐이겠지
-
아.
-
서울와서 늦저녁 3
탄수화물 그리웠다
-
대통령에 이승만 박사를! 부통령에 이기붕 선생을!
-
대학 이름빨로 34등급 학생들한테 이름표 장사 하겠잔 거잖아
-
이젠 진짜 얼마 안남았다... AT 최다득점자/ 최다출장자 막시즌 무관으로 보내겠네
-
8ㄷ0 인용 확률 80퍼 4ㄷ4나 5ㄷ3 20퍼봄
-
어쩌다가 보니 수시카드를 메디컬 일부 공대 일부 이렇게 쓰게 되는데 워낙 다른...
-
그렇더고 삭제하진 않겠어 게이같잖아
-
전 방 화장실 샤워할때만 써서 휴지사용량이 거의없단말임.. 근데 넣자마자 한줄은...
-
https://m.dcinside.com/board/exam_new/8392780?r...
-
어렵다 어렵다 말이 많아서 며칠만 특강듣고 기출풀면 수월하게 풀리는지 ㄹㅇ 어려운지...
-
재수생 확통런 0
현재 재수생이고 3모는 수1 스블만 완강하고 수2는 아직 1강도 안듣고 풀어서 공통...
-
담요덮고 형광펜 4종류로 밑줄치면서 듣기
-
몸이 ㅈㄹ남 2
졸라아파
-
크랙팟이 이런뜻인가..
-
룸메도죽이고싶은데
-
나중 진로가 꼭 전공 따라가는 건 아니더라고요 현재 IT회사에서 일하고 있습니다...
-
시온님 생일기념
-
난 선택만 필요한데 미적확통 다 사느라 공통 2권이 늘게 생겼네 아오
-
안녕하세요 다름이아니라 6평을 신청해서 6월3일에 칠지 , 진도를 다 나간후 혼자...
-
어셔의 SBS 인기가요 출연(2004년)훗날 슈퍼볼 하프타임쇼 출연 가수가 왜 여기에?
-
여자 좋아한데...
-
ㅇㄷㄴㅂㅌ
-
갑자기 뭐지다노
-
[속보] 서강대 서귀포캠 건설, 한의예 7000여명 모집 3
연세대, 고려대, 성균관대, 한양대, 중앙대, 경희대, 한국외대, 건국대, 동국대,...
-
이따 봅시다 4
-
여러 의미로...
-
정직한 제목
-
종강해주세요 7
지금당장
-
합이 2분의 파이임을 증명하시요
-
컴공 지망입니다
-
우웅 알겟어
-
고백아닌고백박음 9
ㅈㄴ떨린다 미칀
-
정병호t 원솔+기출->빅포텐하려는데 프로메테우스 수강하지않고 바로 시작해도...
-
ㅈ반고 쌤 근황 16
젊고(20대 중후?) 학생들이랑 소통 많이 하시는 여자쌤인데 ㅈ반고 과탐 가오충들이...
-
아니진짜잇올 1
두교시 남았지만 띄쳐 나가고싶다
-
7분후에 또 나가야되잖아요
-
전문직 준비하는거면 괜찮은데 괜찮은 중견정도 회사 가고싶은거면 연고대 문과 나와도...
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!