[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
추가로 워크북도 풀 생각임
-
똥테가 진짜 오르비에 시간은 시간대로 꼴아박고 인지도 없는 찐따 << 대변하는 느낌이라 개싫은데
-
개념 끝내면 김준 기출강의랑 어나클 보려고 하는데 개념 강의 누구 듣는 게 좋을까욤
-
리트 추리논증 0
재미 삼아 풀어봤는데 뭔가 국어 보기지문 같기도 해서… 얘는 수능 국어에 도움이 된다고 보시나요?
-
누렁아 이거 니나 무라
-
저녁추천좀
-
인스타에 앨범예고
-
정신적으로 문제있는 애는 예뻐도 안만나줌 부정적이어도 안놀아줌
-
이 사람이 테두리 색이 먼지 이 사람이 뱃지가 먼지 이 사람이 에피...
-
수학 자이스토리 0
ㅜ미적 3모수학4인데 지금 자이 돌리는건 너무 시간 잡아 먹을까여?ㅜ 수능은 2~3...
-
시간이빠르다..
-
오리엔트 정공에 1억 다 넣고 이익률 1위라 카더라
-
그렇게 생각함 나는..
-
오늘 11시반 7
미국 천연가스 재고발표..
-
현역때 국어 5등급이었는데 이원준 해설보고 이 사람이다 확신후 바로 브크 들었음...
-
안녕하세요. 이딴 걸 가르쳐도 되나 싶지만 생각보다 유용한 경우의 수 계산...
-
흠 15
-
옵붕이들은 어떤가요 19
그 분이랑 30분 거리에 있는 곳에서 이제 집 간다고 했는데 차로 데려다 준다고 온...
-
공부의 첫 단계는 부족한 부분을 찾아내는 것이라고 생각하는데, 국어에선 부족한...
-
핵폭탄? 그딴걸론 성에 안차지 초신성 감마선 폭발로 지구를 0.31728123초...
-
화1은 가오가 아니라 객기다
-
221010이차함수로 돌려서 풀어도 되는거 맞나요? 2
문제 밑에 코멘트 보니까 로그함수로 푸는거같아서
-
포만감이랑 집에서의 아늑함 버리고 추운 골목길 10분동안 걸어가서 스카 의자...
-
휴휴
-
언매 헤이팅 하지 말아 주세요
-
수능 관련해서 고민이네요
-
안해도 2고 하더라도 ㅈ빠지게 안하면 어차피 2라 걍 하기가 시름ㅋㅋ; 근데 하긴 해야겠지...
-
D-21 0
중간
-
최석호 2022년 평가원 예시문항 공통 전 문항 해설 난이도 3 약간 쉬움 1급...
-
21년 9월 가형 21번 문제입니다. 요렇게 풀다가 ...1 의 경우가 해석이 잘...
-
그냥 학교를 가기 싫은거였어 ㅋㅋㅋㅋㅋㅋ 에휴 과제 또 해야하는구나
-
수학 안하니까 0
오르비에 할말이 타인의 10퍼센트 밖에 안됨
-
(예) 사회적기업 스튜디오115 무료인강입니다. 스튜디오115(스튜디오일일오)에 전...
-
오뿌이들은 어떤 하루를 보내셨나요
-
안녕하세요 2
처음만난사람들도안녕하세요
-
방인혁 말고 좀더 스킬 알고싶은데 메카니카나 파급효과같은거사야함..? 아니면 방인혁...
-
6월전까지 국어 4
강민철 수강생인데 6모 전까지 뭘 해야 되나요? 수특 다 끝내고 마더텅 같은 거 한...
-
잔다 1
내꿈꿔
-
폰 바꾸면 6
폰 반납하는게 나을까? 할인 많이된다는데
-
팥붕 vs 슈붕 8
당장 골라줘.
-
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다 팔로우해주시면 뻘글 없이 맛있는...
-
뉴런 빨리 끝내려하는데 26 뉴런 볼륨이 너무 커서요 짧은 작년걸로 돌리고 싶은데...
-
나도 폰바꿀듯? 2
S23울트라->S25울트라로 업그레이드
-
중1때 박근혜 탄핵당하는거 실시간으로 봤었는데 윤석열 탄핵 당하는것도 볼려나
-
낼 탄핵될 거 같은데
-
햄 아이폰으로 바꿀까? 11
지금은 S23울트라쁠라스 쓰는중
-
주변 소리가 안들린 적이 있나요
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!