[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
와 체대 때도 따로 빠져서 공부하는 애 있네 ㅎㄷㄷ 0
물론 시험기간이랑 겹쳐버리긴 했는데 좀 대단하네
-
입학한 사람들 ㄹㅇ 개조졌네 한 18? ~ 21? 쯤 학번들 챗지피티 이후에 입학한...
-
유튜버님이랑 무관하게 노베가 7개월 만에 경희대 가능합니다 1
제가 가르쳐서 그렇게 된 건 아니지만 Liam님이 노베에서 2달 만에 국어 백100나오는 거 보면요
-
메디컬 지1지2 할지 사탐할 지 갑자기 심히 고민되네요 1
의대증원도 취소된다고 하니 과탐으로 밀고가는게 더 힘들어진건지 그럼 사탐으로 돌려서...
-
대각 합 180도 활용해서 삼각함수 변환하고 코사인법칙 쓰면 풀리는듯
-
그건 바로 저였구요 ㅎㅎ 오르비에 온 지 넉 달이 다 되어가네요 제 칼럼 읽어주시는...
-
1.돈의 가치가 낮고 and 물가가 낮다 부정형은 2.돈의 가치가 높다 or 물가가...
-
4덮 경제 뭐임 0
서바급인데 3모 10분컷 50점 3덮 45점인데 4덮 - 1장 간신히 풂ㅋ
-
“‘학생은 왕’ 여기며 학교를 놀이판으로… 내가 더 설레더라”[데스크가 만난 사람] 2
이길여 가천대 총장이 경기 성남시 본교 교정의 광장에 자리한 학교 상징 캐릭터...
-
아예 사실과 추론적 사고를 묶어서 성취기준으로 밝힘 0
내용파악(사실적) + 추론적 사고가 엮여있는걸 보니 사실과 추론을 나눠서 생각하지 말라는 뜻인듯
-
한의대가 가고싶어져서 나이 먹고 다시 도전하려고 하는데 확통 사탐이 맞는지 미적...
-
갈때가 얼마 안남은것 같은 느낌임
-
44?
-
이명은 "슈퍼맥스급 고시감옥"
-
와서 내일 과외 두 개 준비
-
어제 30분박고 못풀었던게 5분컷이나네 뭔 생각하고 푼거냐ㅜ어제 ㅋㅋ
-
금풀강 0
으흐흐
-
큐브 풍년이네 1
너무 좋다
-
"식당서 물고 빨고, 눈치 줬더니 화장실로…문 부서질 정도 애정행각" 4
(서울=뉴스1) 소봄이 기자 = 공공장소인 식당에서 중년 남녀가 진한 애정 행각을...
-
서버 터졌나
-
열품타 왜이럼 0
와이파이 잡혀있는데 서버연결 실패했다고하네
-
레버기 0
부지런행
-
다이어트 1일차 2
ㅇ
-
처음에 어떤 직원이 100만원주고 어떤 회사의 물품을 샀다 그 회사는 반을 저축하고...
-
군대 가기 싫어지네
-
혹시 개별 문제 난이도는 좀 올라갔다고 느끼시나요? 수학 못하는 허수라 잘 모르겠어요..
-
근데 수업시간 이슈로 40분/40분 나눠서 풀듯
-
피곤함이 온 몸을 감싸고 도네..
-
족같다 하
-
병원 가봐야하나 하루이틀이아닌데 침대 맨날 축축하게 다 젖음
-
사문이랑 화학 시작하면 되나요?
-
원래 물1지1이었다가 25수능보고 생1지1으로 바꿈 생1은 아직 유전부분 개념도...
-
4덮 미적 92 2
무보정 1뜨나요..?
-
83점인줄.. 0
81점 이였노 시발
-
5시간 자다가 7시간 자니까 정신이 말똥함
-
토막 글귀4 0
산문시 같은 느낌이 있습니다
-
국어: 90점 독서 2개 문학 2개 가나형 7번 경제 11번 문학 3점 두 개 국어...
-
오늘의 아침밥 2
음역시맛있군
-
삼페 등록 안했는데 점심 어떻게 먹죠...... 계좌이체도 받아주시려나........
-
수학 예시문항 현 미적분과정 문제들 뭔지 좀 알려줄수있음? 4
기하하는데 현 공통과정만 풀려고 겉보기로는 구별 안되서
-
문항공모는 하던데..
-
진짜 개빡치네
-
일물 물2 질문 0
이거 가속도 계산할 때 관성모멘트 안 쓰고 하는 법 있을까뇨?ㅠㅠ 이채연 4덮
-
https://orbi.kr/00072866211 투표 결과가 별로면 명품 얘기 좀 줄이겠습니다
-
재수생까지 해서 20만명 예정이라는데 작년 꿀 영향보고 오는 것 같아서 상위권 표본...
-
길 웰케 막히지 0
진짜 좀만 늦게 출발했어도 늦을 뻔
-
4덮 언미영생지 72 85 100 42 33
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!