수학에서 실전개념이라는게 뭐라고 생각함?
게시글 주소: https://orbi.kr/00071329880

답지풀이말고 천재적인 풀이같은거 있잔아
굳이 n축같은 교육과정 외 스킬 안 가져오고도 그래프로 푼다거나...그런거
실전개념? 뭐라그럴까 이런걸
예를들어서 저 밑에 문제 조건을 보고 y=sin(k/6)선대칭이구나 바로 알아내는...그런거
이런거는 어디서 배우는거임? 이런게 재능차이인가 기출 풀어도 저런 능력은 안키워질 것 같음
저런 직관은 어떻게 키우는걸까
저런거에 집착 안하고 정석풀이 위주로 공부하는 편이었는데 3등급 벽이 안뚫려서 고민이 많아짐
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예전에 남자 친구가 그렇게 까지하는 의도가 머냐고 물어본 적 있음 오랜만에 썰 풀었다
-
ㅈㄱㄴ
-
유튜브 카더라 썰만 듣고보면 내가 봤을때 검정고시->수능 트리 탈듯 저라면? 실용성...
-
아니죠..?
-
봉사 실적 0
vms에서 찾은 봉사활동 하고, vms에 따로 등록을 해야 나중에 기록이 남나요?
-
미적은 스블하는중인데 공통도 스블 들을려니 강의 수가 넘 많은데 기출 풀고 n제...
-
돼지아님. 마크 굿즈사려고 그런 거임.
-
오늘 뭐할까 6
어제랑 다르게 날씨도 좋네
-
몽글몽글 8
철퍽철퍽
-
물리 역학의 기술 걍 빨리 풀고 넘어가는게 나을까요? 3
기출정도는 그래도 나름 스무스하게 풀리는 실력인데 역학의 기술 사서 풀어보니까...
-
구라임
-
우리 스카는 아무리 시끄러워도 남이사더라 다들
-
탈출 성공 0
찐따라 따지지도 못하는 내가 너무 원망스럽다
-
혼쭐을 내는 방법 공유점
-
원래 미성년자가 운전해도 되는거에용?... 면허 취득이 가능한건가
-
국어 4등급 7
국어 4등급인데 어떤 커리가 더 좋아보이나요?? 반수생입니다 도와주세요…....
-
뭐라고? 화이트 가방 지퍼 부우우우우욱 아 진짜 모르겠다 (지친구 들으라고 내는...
-
나같은 초보가 운전하기에는 길이 너무 험난하다...
-
강기분 듣고 있는데 체화가 1도 안되는데 어캄? 문학은 하라는대로 구불구불 밑줄...
-
연애인 본다 ㄷㄷ
-
재수생인데 김승리 선생님 따라가면서 tim 오늘 처음 시작했는데 일정 보니까...
-
끼잉
-
돈 벌고 올게 7
씐나게 놀려면 일을 해야지
-
장점이 뭐임
-
안녕하세요 이미 대학을 다니고 있긴한데 올해 논술을 한번 더 봐볼까해서 최저를...
-
이 문제에서 수축했을 때 ㄱ과 ㄷ의 변화는 이해가 되는데요. ㄴ이 ㄴ으로만 변화되는...
-
도표 없는 물2생2함
-
삼수기록 9일차 2
지인선n제 set2 틀린거 복습
-
무현동호회
-
션티 0
내신휴강 끝니고 현강에서 뭐하나요? 지금처럼 ebs 다뤄주시나요?
-
몇명이서 온건진 모르겠는데 지들끼리 돌아다니면서 누구 불러내고 떠들고 ㅋㅋㅋㅋㅋ
-
n제 검색하면 17
내꺼가 많이 나온다 그리고 존경하는 다른 분들 n제 검색해도 연관검색어에 내가 뜬다...
-
조은 아침 0
-
지금 생각의전개랑 생각워크북으로 좀 진하게 기출분석 하고 있는데(하루에 한지문씩)...
-
이제 곧 수능 200일 남았는데 수학 1,2 할 수 있을까요? 고1때 수상 수하는...
-
지금 집중 ㄹㅈㄷ 안댐
-
너네 뭐 놀러왔냐..!
-
리비에스 조음? 0
ㄱㅇㅇT 리비에스 비재원생한테도 파넹 머지
-
둘이 차이없음? 시발점 들었는데 뉴런 들을까 고민되누
-
양이 안 차는데 햄부거 단품 또 먹을까
-
생명과학1 교재 1
한종철 캐치로직 듣고있는데 문제수가 부족한거 같아서 변별문항만 있는 문제집 있을까요?
-
연고공이 목푠데 그냥 미적 유지할까요 아니면 확통런을 해야할까요? 미적은...
-
통과 못하면 죽어버리는 사람들 평 보면 그렇던데
-
맞은편 앞저리에 중삐리 새끼들 속닥이고 쿵쿵대고 킬킬대고 미래가 보인다 시발...
-
물리 내신만 하고 고3 때 지1 했다가 재수하면서 물1으로 바꿨습니다. 배기범...
-
데이트하실분 3
날씨개좋아
-
지금 이렇게까지 잘하니까 불안한데
-
https://n.news.naver.com/article/001/0015313146...
-
요즘은 너무..
-
의뱃,약뱃,한의뱃,수의뱃,설뱃,연뱃,고뱃 보다 적음
한 문제 한 문제를 소중히 여겨야댐
찌찌뽕
근데 문제 하나 무작정 처다본다고 그런게 떠오르지는 않음 나는....
이제 저 문제에서 선대칭 아이디어를 알앗으니 비슷한 조건이 나왓을 때 이 문제를 공상하듯이 풀 수 잇으면 정말 빠르게 실력상승이 가능함미다
저건 실전개념보단 짬바임
저런거 기출 풀다보면 보입니다
단 재능 있는 사람은 개념만 해도 보여요
재능 없으면 기출 5회독은 해야 그제서야 보이고요
그냥 4점짜리 벅벅 회독 돌리면 감이 오는걸까용...? 어떤 생각을 해야하는건지 궁금해용... 수분감 이런거 들어봤는데 걍 현우짐풀이 외우기 느낌이라 손절햇어요
다른 사람의 풀이에는 사고과정이 안 들어있어요. 물론 해설지가 아니라 강의같은 경우에는 그 사고과정을 어느정도 설명해주지만, 그럼에도 본인 스스로 어떻게 사고해서 이 문제가 풀린건지 정리할 필요가 있습니다.
문제를 열심히 시도를 해보고 해설을 봐야하는 이유도 이때문입니다. 그냥 보면 사고과정을 파악하기가 쉽지 않거든요. 어느정도 부딪혀보고 해설을 보면 여기서 왜 그 생각을 햇어야 햇는지를 파악하기가 수월해지죠. (또 왜 내가 못 풀엇는지 등등..)
강사가 가르칠 법한, 혹은 널리 퍼져 있는 실전개념과 공식들을 우선 숙지하고 있어야 함. n제나 기출을 풀 때 우선은 푸는 것 자체에 집중하되, 그 풀이가 덜 다듬어져 있다면 혼자서 끙끙대보는 거임. 여기서 적용 가능한 개념이나 공식이 없을까? 필요하다면 해설지나 강사의 풀이과정을 참고해서라도 이런 풀이를 많이 접해야 함. 이런 식으로 문제를 충분히(충분히의 기준은 사람의 재능에 따라 갈림) 접하다 보면 새로운 문제를 볼 때 기시감이나, 말로 표현 못할 직감이 들 때가 있음. 이 직감은 문제를 많이 풀수록 더 자주, 더 뚜렷하게 나타남. 이게 쌓이고 쌓여서 풀이도 다듬어지고, 빨라지는 거
+번외로, 위의 문제는 선대칭을 꺼낼 필요 없이 그냥 y=sinx와 y=sin(kπ/6)의 교점의 개수로 생각해도 무방함. 어차피 교점의 위치를 알 필요 없이 개수만 구해도 된다면, 구간에 관계없이 sinx=sin(kπ/6)일 때 교점이 생기므로 굳이 그래프를 희한하게 안 그려도 됨. 당연히 이런 아이디어도 다양한 문제를 많이, 아주 많이 풀다 보면 자연스레 떠오름