수학에서 실전개념이라는게 뭐라고 생각함?
게시글 주소: https://orbi.kr/00071329880

답지풀이말고 천재적인 풀이같은거 있잔아
굳이 n축같은 교육과정 외 스킬 안 가져오고도 그래프로 푼다거나...그런거
실전개념? 뭐라그럴까 이런걸
예를들어서 저 밑에 문제 조건을 보고 y=sin(k/6)선대칭이구나 바로 알아내는...그런거
이런거는 어디서 배우는거임? 이런게 재능차이인가 기출 풀어도 저런 능력은 안키워질 것 같음
저런 직관은 어떻게 키우는걸까
저런거에 집착 안하고 정석풀이 위주로 공부하는 편이었는데 3등급 벽이 안뚫려서 고민이 많아짐
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어그래다들반갑고~ 16
ㅎㅇ
-
기권란 만들어서 일정 비율 이상시 후보 모두 사퇴 후 다시 선출
-
6/3 대선이라는거 같은데 얼마나 미뤄질지..
-
은 다 전국 아닌가요?
-
현역때는 4개 넘기는게 소원이었는데 발전했다 내 자신! 시대 장재원 복테
-
도대체 언제 바뀜??? 양당구조 지들도 알고 있으니까 지들 맘대로 엉터리 두명...
-
오르비 과외시장 3
탈퇴하거나 접근 할 수 없는 계정이라는데 왜 이러는거?
-
일반과랑 과팅하고 싶었는데.. 일단 보내줘..
-
제가 원래 멘탈이 워낙 약하고 정신이 좀 안정감이 없어서 공부하면서 스트레스 받고...
-
기절해서 지금까지 잠... 잠 어떻게 자지
-
잇올에서 시대컨 6
다들 서바이벌 나오면 사실건가요? 29주치라고 해도 한번에 270만원은 좀 부담스러운것 같은데..
-
얼마나 찌를건가요 전 3번 저는 제 심장 도려내게요
-
https://orbi.kr/00072750950/ 네네 제 전생이 보인다고요?...
-
담뇨단? 가오고 뭐고 자존심 다 버린다 성적 올리려면 뭔들 못하겠냐 체화 안된...
-
우울해 4
잘래
-
공부 내용 물어볼게 여기밖에 없어요 공부 얘기만 할게요ㅜㅜㅜ
-
흑역사 2
음악 들으면서 샤워하다가 갑자기 공황 와서 벽잡고 오열하다 진정 안돼서 119...
-
캔버스 생2 0
개념형은 괜찮은데 추론형 난이도가 좀 아쉽네
-
진지하게 고민중인데 재작년작년 둘다 설경 가는 성적인데 뭔가 올해 다시 가는건 시간...
-
과탐런을 한 나
-
음.......평생 남들과 비교하며 살다가 비참하게 죽는걸까 나 어떡하냐
-
살려다오 4
-
대학 어디가요??
-
난 평소와 똑같았단 말이다
-
이태리 불란서 독일 희랍...
-
지방 싸그리 몰락하고 수도권은 장벽세우고 살수 있다는 자신감은 어디서 나오는건지 ㅋㅋ
-
장재원 수학 0
장재원 수업 방식이 어떤가요..? 지금 김범준 현강 듣고잇는데 문제해석이...
-
통계 문제 비주얼 2황 15
위: 2015 가톨릭대 의예 아래: 2016 가톨릭대 의예 모의
-
만백은 99라고? 게딱지 개같이 3점짜리 틀렸는데 줘도 되는 지문이 아니었다고?...
-
아직 미적 진도 다 나가지도않았고 3모 기본 2점문제 2개만 맞춘 수준인데 그냥...
-
과외할 실력이 되고 싶다... 수학 너무 어려워...
-
N제 푸는 거보다 재밌어요
-
나는 의미있는 존재는 아니었나보네 인생 잘못살은듯
-
.
-
여러분 제가 철학을 공부를 좀 제대로 해본지 약 한 달 정도밖에 들지 않았지만,...
-
덕코주세요 5
응애
-
???: 돌아버린거냐 ??: 아니 잠깐만 전례가 있어 ??: 되는데? ???:굿아이디어~
-
빅스선물이 40? 5년에 한번오는자리다
-
- 강사로서 더 이룰것은 없음 - 쌓아놓은 재산만도 3대가 다 못 씀 - 사교육...
-
성경공부부터 해서 서양문화의 뿌리가 결국에는 크리스트교니까 재밌을 거 같음 그리고...
-
내가아는 문수형은 119전화해서 나 도지사닙다 하다 외면받은거 밖에 기억에 없는데
-
재밌을 듯
-
찣칠라 대항마로 0
안철수말고는 답 없는듯
-
사문 개혁안 0
도표는 복지제도 유부노 계층이동 여성임금 빈곤율 이렇게 5개 넣고 나머진 양적연구...
-
원문 바로가기 :...
-
안녕하세요.. 4
안잉하잉요
-
급9
-
저런 함수인걸 숨기고 그걸 찾는데 끝났으면 그저그런 문제였을텐데 문제세팅으로 방향성...
-
물2 브릿지 1
시대인재 올해 2026 물2 브릿지등 자료들은 어케받는거에요? 단과 열린게 없던데
한 문제 한 문제를 소중히 여겨야댐
찌찌뽕
근데 문제 하나 무작정 처다본다고 그런게 떠오르지는 않음 나는....
이제 저 문제에서 선대칭 아이디어를 알앗으니 비슷한 조건이 나왓을 때 이 문제를 공상하듯이 풀 수 잇으면 정말 빠르게 실력상승이 가능함미다
저건 실전개념보단 짬바임
저런거 기출 풀다보면 보입니다
단 재능 있는 사람은 개념만 해도 보여요
재능 없으면 기출 5회독은 해야 그제서야 보이고요
그냥 4점짜리 벅벅 회독 돌리면 감이 오는걸까용...? 어떤 생각을 해야하는건지 궁금해용... 수분감 이런거 들어봤는데 걍 현우짐풀이 외우기 느낌이라 손절햇어요
다른 사람의 풀이에는 사고과정이 안 들어있어요. 물론 해설지가 아니라 강의같은 경우에는 그 사고과정을 어느정도 설명해주지만, 그럼에도 본인 스스로 어떻게 사고해서 이 문제가 풀린건지 정리할 필요가 있습니다.
문제를 열심히 시도를 해보고 해설을 봐야하는 이유도 이때문입니다. 그냥 보면 사고과정을 파악하기가 쉽지 않거든요. 어느정도 부딪혀보고 해설을 보면 여기서 왜 그 생각을 햇어야 햇는지를 파악하기가 수월해지죠. (또 왜 내가 못 풀엇는지 등등..)
강사가 가르칠 법한, 혹은 널리 퍼져 있는 실전개념과 공식들을 우선 숙지하고 있어야 함. n제나 기출을 풀 때 우선은 푸는 것 자체에 집중하되, 그 풀이가 덜 다듬어져 있다면 혼자서 끙끙대보는 거임. 여기서 적용 가능한 개념이나 공식이 없을까? 필요하다면 해설지나 강사의 풀이과정을 참고해서라도 이런 풀이를 많이 접해야 함. 이런 식으로 문제를 충분히(충분히의 기준은 사람의 재능에 따라 갈림) 접하다 보면 새로운 문제를 볼 때 기시감이나, 말로 표현 못할 직감이 들 때가 있음. 이 직감은 문제를 많이 풀수록 더 자주, 더 뚜렷하게 나타남. 이게 쌓이고 쌓여서 풀이도 다듬어지고, 빨라지는 거
+번외로, 위의 문제는 선대칭을 꺼낼 필요 없이 그냥 y=sinx와 y=sin(kπ/6)의 교점의 개수로 생각해도 무방함. 어차피 교점의 위치를 알 필요 없이 개수만 구해도 된다면, 구간에 관계없이 sinx=sin(kπ/6)일 때 교점이 생기므로 굳이 그래프를 희한하게 안 그려도 됨. 당연히 이런 아이디어도 다양한 문제를 많이, 아주 많이 풀다 보면 자연스레 떠오름