공리를 부정해도 무모순임
게시글 주소: https://orbi.kr/00071314171
1. 공리는 참이라는 증명이 없다
2. 따라서 귀류법 증명도 없다
3. 따라서 공리를 부정해도 무모순
그리고 허준이 교수가 말하길 수학은 무모순이기만 하면 된다고 함
따라서 실수의 완비성 공리를 부정해도 무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
도쿄스카이트리 나히아한테 먹힘 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
한중록 딱대
-
26수능 화1 빈집털이 15
6.9때 화2 표점 많이 높게 나오고 화1이 적당하면 화1>>화2로 이동한 상위권들...
-
대학원까지 진학할 의사 있습니다. 둘다 생명쪽으로 갈 듯 합니다.
-
시대에서 주네
-
동국대 합격생을 위한 노크선배 꿀팁 [동국대 25][동국대학교 학생들은 여기서 마신다] 0
대학커뮤니티 노크에서 선발한 동국대 선배가 오르비에 있는 예비 동국대생, 동대...
-
개빡치네 왜 수학 92를 넘지 못하는 건데 나도 좀 96~100대 가서 ㄱㅁ하고...
-
폽핀카라 폽핀 8
폽인투~!
-
나중에 암살당하는 건가
-
재수가 시작됐다는 것
-
무한히 많은 사과(0)에 오이(1)하나 추가하는게 왜 불가능하죠 그러니까 무한히...
-
악명이 좀 잇나요
-
수학 4
진짜 잘해지고싶음……
-
의뱃이 에피보다낫다고 자기최면걸면 괜찮지않을까?
-
바로 2019 수능 ‘현역’ 만점자 김지명님 무려 백혈병을 극복하셨고(중학생 시절)...
귀류법 증명이 없다는 게 귀류법이 증명의 도구로서 쓰일 수 없다는 거임?
그냥 귀류법으로 증명할수 없다는 말임

흐흐 쿠쿠리박사님 오랜만이다공리가 참이라는건 증명할 수 없어도 공리가 거짓이다는 공리계 안에서 거짓인 명제임으로 공리들로 모순인걸 증명 가능함
공리를 p로 한다면 ~p는 p에 의해 모순인게 보여짐
~p를 주장하려면 새로운 공리계를 만들어야함
공리의 정의가 다른 명제에 연역되지 않으며 항상 참으로 여겨지는 명제이므로1 2는 당연한거고
허준이 교수님이 말한 수학은 무모순이기만 하면 된다 라는 말에서 '무모순'이 모순이걸 모순이 아니라고 우기는걸 말하신게 아님
3은 앞에서 말했다시피 모순임

자기 혼자만 주장하는 공리는 의미가 없으니깐요…혼자만 주장하는 공리는
제가 사실 달이 4개인데
빅브라더가 이 사실을 숨기고 있다고 주장하는 거랑
다를 게 없으니깐요…?