회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00071251089
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가능한거임? 난 수업 내내 맨앞에서 마플퓬 문학쌤도 좋데 써줬던데
-
강기분 어쩌죠 4
이제 1주차 다 본거긴 한데 더대체 어떻게 체화하는건지 감이 1도 안잡햐요;; 시간...
-
나도 이러고 싶진 않았다만
-
9
-
이것저것 전역하고 많이 육군스러워지긴 했지만 공군이 최고 오랜만에 오르비 들어온 공군 전역자가,,
-
키프로스 eu회원국, 남북분단 예멘 과거 모카항에서 커피수출 레바논 크리스트 이슬람...
-
이상하다,찐따같다 나댄다 이런거면 들어도 그러려니했을텐데...
-
슬퍼요 1
에너지 드링크 다 마심
-
우리과 전공 발표하는데 내용은 별거 없었다 생각했는데 교수님께서 발표 내용이...
-
반수? 편입? 3
작수 35323 현재 대학 재학중입니다 학교도 마음에 안 드는데 학과까지 내가...
-
존나 아파요
-
버건디 이쁘다
-
이런거 처음봐요
-
엄마한테 오리엔트 정공 안늦었다고 하다가 쿠사리 먹음 6
헛소리 하지 말고 공부나 하라함
-
나 박근혜 탄핵때는 초등학교에서 생중계 해줬는데
-
어이가없네 그냥 교사경 발사대 넘들이
-
아님 모바일로?
-
저렇게 되면 3
사관학교도 내려갈 가능성 있으려나
-
계속 질문하면 어느순간 지 논리가 뒤엉켜 막혀서 상대한테 인신공격이나 함 . . ....
-
나도대학생활하고싶다고나도대학친구사귀고싶다고나도선배들한테밥약걸고싶다고나도술잔뜩마시고싶다...
-
ㅎㅇ 4
ㅎㅇ
-
아르바이트어떰? 14
초등학교 우유배달 우유를 통에 담아서 1~6학년 교실에 놓고 다 먹은 우유를 다시...
-
외고생 수학내신 학원 꼭 필수일까요?중위권인데 허덕허덕해서 학원숙제만 하다가 시간이...
-
그럼 우리 부모님도 슬퍼질거야
-
피부과 말고 제품이라 해야하나 그런거 꾸준히 하면 진짜 피부 goat됨?
-
현정훈 VOD 2
현정훈 VOD 살 때 몇주차 선택적으로는 못사죠?
-
무지성인 이유: 동덕여대로 대화하는데 개무지성으로 지지하길래 내가 "학교의 주인이...
-
러셀 전화왜옴? 4
러셀 안다니고 외부생으로 3덮 친게 다인데 왜자꾸 전화오는지 아시는분..?
-
이재명씨... 당신 왜 이렇게까지 이 나라를 위해 목숨을 겁니까? 대한민국이...
-
뭔가뭔가임.. 기분이이상해
-
자제분의 반응이 기대되는군요
-
수학쌤이 수1 가르치시면서 온갖 잡스킬 알려주는데 ㅋㅋㅋㅋ 서술형에 써도 인정 해주신다며
-
ㅇㅈ 1
하면 아무댓글도 안달릴까봐 무서움
-
헌재, 5 대 3 선고 못 하는 이유…‘이진숙 판례’에 적시 5
헌법재판소가 1일 윤석열 대통령 탄핵 심판 선고기일을 4일로 지정함에 따라 그동안...
-
작년 수능 4등급 마감 평가원 지문 가기전에 고2 독서 지문 해볼려는데 비추인가요?
-
여러분들은 어떻게 하나요? 억지로 이해하려 하지 말고 그냥 얻어갈 것만 정리해도 괜찮을까요?
-
삼수기록 5일차 0
국어 기출 2017수능 반추위 리트300제 2011 6-8 수학 수1 4의규칙...
-
무료 기출 열람 사이트는 없나요 ㅜㅜ 다 이용권 구매하래서
-
흐어엉 ㅠㅠㅠ 0
복권에 탕진했어요 ㅠㅠㅠ
-
이거 왜 공식임 3
https://youtube.com/shorts/b713qElVFPg?si=J87gY...
-
5월까지 끝낼꺼 0
알텍미적 (50%완료) 뉴런수2(5강들음) 사규12 (수2 30%완료) 언매총론 (2강들음)
-
맛점하세요 23
저는 수육국밥 먹었어요
-
그리 어렵지 않다는 말이 있는데 난도가 어떤가요???
-
화미생윤사문인데 영어1 사탐만표는 자신있는데 국수 어느정도여야 가나요 애초에 갈 순...
-
매일 피곤해서 기절해서 그런가
-
놓쳤네..
-
역시 화장연들인가 시대재종 처음엔160명이었는데 지금270명이라네ㅋㅋㅋㅋ 갈수록 다들 복귀하겠지?
-
25수능에는 도움이 별로 안된다는 의견이 많은거 같던데
-
자사고vs일반고 5
만약 님들이 중학교로 돌아가서 자사고(하나고, 외대부고...)나 일반고(ㅈ반고)중...
-
뭐가 더 어렵나요?
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요

아 2x+C가 아니어도 되나오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임