회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00071251089
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 빌런임? 1
번장같은데 보면 보통 거래되는가격이(56거래가 대부분인데 8혹은 3에 거래된거...
-
쳐다보노! 하 이거이거 참을 수 없다 하고올게
-
진짜 개슬픈점이 0
시계 새로 뽑았는디 아무도 안알아줌.. ㅠㅠ 걍 나랑 기싸움하는걸로 인지하고...
-
나라에 사기꾼밖에 안 남은거 같음
-
3덮 기준 점수가 15311이 나왔습니다 취약 과목이 절대적으로 수학인거 같아 하루...
-
짜장라면 추천좀 5
짜파게티 요즘 노맛이라 다른거 원함
-
수학 계획 7
공통은 수분감 step1 최근 5개년만 풀엇는데 3모 4떠서 자이 풀고 있습니당.....
-
제발 81점 어떻게 안될까 나도 알아 생각만큼 못나온거 그치만 성취감 얻고 싶어
-
죽지않아
-
필기체가 더 빠르다고 느껴지심? 전 아닌 거 같아서 섞어 쓰는데 님들은 어떠신가요
-
hp 노트북임니다 전원은 정상적으로 들어오는데 화면이 안들어오길래 화면문제인지...
-
제곧내
-
어차피 내가 내년에 과외뛰어서 페이백 행사 하면 되잖아
-
3.5퍼는 다 오르비에 있는거 같단말이야
-
연계를 대비하라는 말이 무엇을 어떻게 하라는 것인지 잘 와닿지 않을 수 있습니다....
-
그게 나야 바 둠바 두비두밥~ ^^
-
대전역 오르비 꺼라 13
으응….
-
인생 첫 엔제라 설레네요 흐흐 1등급까지 가자 표지 이쁘죠
-
ㅎㅇㅎㅇ 3
-
규동규동
-
뭐 어떻게든 되겠지
-
현역 3모성적 7
중경외시 이상 가고싶은데...
-
수학 계획 0
미적 rpm,쎈b,시발점 햇고 시발점 워크북이랑 자이 같이 하려는데 ㄱㅊ나여?
-
메디컬 지역인재 0
제주대 지역인재 노리고 있어서 물지하는데, 걍 사탐박고 딴데 목표로 하는게...
-
오토마타갤펌
-
종 2
강
-
바이
-
'격노'와 '킬러 문항 배제'로 시작한 윤석열 사교육 정책, 왜 실패했나 7
'대학수학능력시험 킬러 문항(초고난도 문항) 배제'로 대표되는 윤석열 정부의 사교육...
-
반수생이고 6모 이후부터 합류하려고 하는데 친구가 지금 합류하는게 좋을 것같다고...
-
1종 드가자~~
-
생기부 장수 0
고2 끝났을 때 기준 보통 몇 장 정도 되나요
-
ㅇㅇ
-
닉변 해야되는데 2
하아
-
학습글이나 올려주소.. 개추 20개씩 받고도 못올라가는 글도 있더만
-
잠시 외출
-
다들 닉변을 했더군 . . . . . 에라이 혼자 씁쓸해졌잖아
-
항생제 암기 미치겠군 12
너무많고 복잡하다
-
요시노부의 눈물나는 개혁 똥꼬쇼에도 불구하고 전근대 군대의 한계를 이기지 못하고...
-
수2 너무 과투자햇나 싶다밸런스 잇게 공부하기 너무 어렵다
-
대전 이런 지방에 있는 학원으로는 한계가 있나요?
-
어찌저찌 돌아온다고 생각해요 필요없다 생각한 일생이 생2 암기에 도움이 된다라던가...
-
이 문제 어려운거 맞나요? 풀때 3-k가 항상 2사분면에 있어야된다고 사고가...
-
왜 일을 해야 돈을 주는거지
-
인강패스를구매한다 관성 어케 끊음
-
물컹물컹 5
흐느적흐느적
-
What's up, guys? This is Ryan from Centum...
-
혹시 몰라서 교재 산거도 인증합니다 이차곡선 ㄹㅇ 재밌네요 저랑 잘맞음 태도가 되게 중요한듯
-
대학 수학 능력 시험 문법 문항의 내용 타당도 점검오르비에서 언매 하는 옯붕이들은...
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요

아 2x+C가 아니어도 되나오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임