미적 이 정도면 난이도 어느정도임?
게시글 주소: https://orbi.kr/00071234738
김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
투표나 함 받아보자 17
오늘 기하 문제 풀이를 몇 개 올려봤는데 꽤 재밌어서 수학 감 유지용으로 문제...
-
많을까요 제가 항상 밝고 그렇다는건 아닌데 보다보면 정말...뭐라 말할수 없는분들이...
-
ㅇ아아...
-
참고로 전 잉뿌삐임.
-
좋겠다
-
ㄹㅇ
-
타이레놀은 먹으면 안된다면서요
-
레어나 사가셈 1
개 많네 개 빡치네 개 화나네 화아아악
-
ㅇㅇ
-
약대랑 비교했을 때 약대가 낫나? 미래 생각했을 때 그냥 궁금해서
-
만성 비염엔 코세척이 직빵이다 첨엔 코 계속 찡하고 그럴 수도 있는데 적응하면...
-
리미트 안에서 수렴하면 리미트 밖에선 실수인데 거따가 약간 크니 약간 작으니를...
-
난 오직~ 3
그대 사랑하는 마음에~
-
125만덕
-
글 싹다 밀고프사 바꾸고닉변할꺼임또 새로운 모습으로 나타날꺼임지금의 모습을 간직해두셈
-
작성자는 올해 연대 신입학생이나 연대 문턱에 발도 못들일 시절 입장에서 최대한...
-
인스타 팔로워 한명은 556 한명은 572명이네 ㅋㅋㅋㅋㅋ 얘네 중딩인데 뭐지...
-
10분이내에 안나타날시 극한은 상쇄되는게 맞는거임
-
다들 주변에 몇없는 고능아들이던데 여기만큼은 사람답게(?) 노는걸 볼 수 있으니까 신기함
-
연대가 교차 줄인 이유가 연대 문과 = 반수학원이라 바꾼 듯 1
연대 문과 교차 풀리면서 연대 상경대, 사과대가 자퇴생 15-20% 나왔음요...
-
예전에 대학생 과외 한 번 받아본 적 있는데 지금 생각해보면 그 때 수학을 가장...
-
자기 기준에 나쁜대학 가거나 N수하게된 애들은 인증도 안하고 남들한테 말도 잘 안해서 그런거임
-
프본임뇨 2
인증 필요 없음
-
복권 투배럭 돌리면 이거 합법인가요? 복수계정은 아닌데
-
ㅎㅇㅎㅇ
-
쓸데없이 마침표 쓰기?
-
극한상쇄 궁극적인 어둠의 스킬임
-
ㅈㄱㄴ?
-
와 존잘존예들이 모이는 이곳 내가 껴도 되는 자리 맞음?
-
극한상쇄 17
이거 걍 x ( x>=1 , x<=-1) f(x) (-1<x<1) 극한상쇄...
-
고3때까진 코피 한 번도 나본 적 없는데 재수 할 때 잇올에서 공부하다가 코피...
-
선발 조오됐네 0
한골 먹히고 교체때려서 주전들 체력 갈아버릴각 보인다 보여 반드시 잡아야 하는...
-
유툽보니까 공항에선 보안검색대만 통과하는데 3시간 걸렸다고하던데 님들은 어떻거 내려갈예정???
-
잇올 앱 8
잇올 앱으로 출결이랑 다 바뀌면 만약 잇올 안에서 카톡같은 거 켜면 바로 걸리는...
-
어떻게 저런 생각이 바로 나오지...? 창의적이라 봐야하는걸까..? 이상한 쪽으로 창의적...?
-
취르비 입갤 5
혼자 세병 먹고 등장
-
레어 확인 9
.
-
그냥 심리적으로 그럼근데 여기서 상대가 맞팔로우 안한다? 그럼 바로 무한 우울 스택 쌓이는거임
-
부럽다....
-
자기전에 ㅇㅈ 28
아니 오늘 사진 개잘찍혀서 자랑하고 싶은데 본계 비활이라 자랑할데가 없어서 올림. 펑
-
집릿때 두달만에 풀집중하니 실핏줄터짐 ㅋㅋ;
-
과외하는데 숙제 0
애가 숙제 하루 안했고 월요일에 과외있는데 이날 한번 더 안하면 부모님한테...
-
여르비 ㅇㅈ 11
...
-
재수 고민 2
지방일반고 2점후반대에 인서울 힘든 성적이라 정시공부 빡세게 했고 이번에 중대...
-
맛있는 문제 좀 올려주세요 오네가이시마스.
-
꾸준글 쓰다보면 0
목표를 향한 마음도 재정립되고 좋음
-
에휴..
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.