유명한 문제 (5000덕)
게시글 주소: https://orbi.kr/00071187010
a_i= 1 or -1이고,
a_1*a_2+a_2*a_3+...+a_n*a_1=0이다.
n이 4의 배수임을 증명하여라
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://www.youtube.com/shorts/qKoew553UmY ㅋㅋㅋㅋㅋ
-
네.
-
많이 해롭나봐요......... 단약할 날은 영원히 안올듯 곧 아버지 은퇴하시면...
-
1년에 두세번 정도 꾸는데 하관 전체(턱이랑 광대뼈)랑 위쪽 어금니가 엄청 아프고...
-
내일도 추우면 안되는데 14
내일은 나가는데........
-
2024년 12월 4주차 韓日美全 음악 차트 TOP10 (+12월 3주차 주간VOCAL Character 랭킹) 5
2024년 12월 3주차 차트: https://orbi.kr/00070891351...
-
전에 한번 얘기한거긴 한데 너무 개그욕심내거나 활발해보이려고 무리하지 마셈 그런건...
-
해야되는 이유들 이거라는데 어케생각하심? 1.하루종일 독재가서 풀타임으로 한다고...
-
그런건 없다
-
저 정도면 누군가의 알고리즘에 한번쯤 뜨지 않을까
-
오늘 비문학 1강을 들었어 그럼 내일 2강듣고 1,2강 복습하고 또 내일모레...
수논러지만 하기 싫어
무량공처 맞기 싫으면 빨리 4의 배수 맞다고 해라....
한번뿐인 기회를 날렸군
_
_
따라서 n은 4의 배수이다.

자명하다근데 *가 아니라 + 아님? 1과 -1을 곱하면 1 또는 -1인데
곱하기임미다
아 중간에 + 있구나
실모나 풀고와라.
그게 뭐지요
수능을 하란말이야
웩
근데 귀류법 쓰면 금방 풀리긴 할 것 같은데
넘모어려워..
이거눈 할만한디
지금까지 맞기만해서
도전하기 두렵다
bi = ai*ai+1로 놓고 짝수인 경우 4k-2랑 4k로 나누면 될 거 같은데
4n-1, 4n-3은 당연히 안됨.
4n-2만 보면 되는데, ++이 연속으로 나오거나 - -가 연속으로 나와서 1인 경우는 동형, -+이나 +-가 연속으로 나와서 -1인 경우는 이형이라고 하면, 동형항과 이형항의 개수가 같아야 함. 이때 이형항이 홀수개인데, 그러면 a1이 같아질 수 없음. 부호가 짝수번 변해야 a1의 부호가 일정함…
맞나요…?

캬히히 덕코 감사합니당
n이 짝수인건 너무 자명함
a_(n+1)=a1이라 하고, bn=ana(n+1)이라 하자.
b_n은 무조건 -1 또는 1임.
b_1+b_2+...b_n=0이니까 b_1, b_2, ..b_n중 1이랑 -1의 개수는 똑같음.
b_1부터 b_n까지 죄다 곱하면 (a_1a_2...a_n)^2인데 a_n이 -1이든 1이든 제곱하면 1이니 b_n까지 곱한 값은 무조건 1임.
b_1, b_2, ..b_n중 1이랑 -1의 개수는 똑같다고 했는데 b_1부터 b_n까지 -1의 개수가 홀수개일 경우 곱은 -1이니 말 안됨.
따라서 b_1, b_2, ...b_n 중 -1은 짝수개이고, 1도 짝수개.
같은 짝수를 두번 더하면 4배수가 되고, n은 b_1, b_2...b_n 중 -1의 개수랑 1의 개수를 더한 값이므로 n은 4배수.
이걸 응용헤서 모고에다가 넣어도 되겠죠..
아아주 유명한 문제입니다 ㅋㅋ
마침 수1 등비수열,귀납적 문제가 필요헸어요 ㅋㅋ
원래 풀이도 올려놧는데 한 번 구경해보세요.
그러고보니 999890님이랑 사실상 똑같이 풀었네요