미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071184988
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
궁금
-
으하하하하 5
으하하하하하하하
-
1. 국회, 그니까 입법부 권한을 대놓고 정면으로 부정중이죠? 2. 가짜뉴스...
-
칭찬 좀 해주셈 9
ㄱㄱㄱㄱㄱㄱㄱ
-
문제가너무얌전해 7
지킬선은다지키면서톡톡튀는문제를만들고싶다
-
으대<< 여기는 4
보통 성비는 어케됨? 그리고 예쁜 애들 많음? 애들 텐션이나 그런건 어떰? 다 공부...
-
작년 재작년 수능 풀어보니까 국영 과탐은 괜찮은데요 미적이 자꾸 삑사리가 나네요...
-
이번에 김기현 T 수 1,2 킥오프까지 보고 3모를 봤는데 낮은4? 조금만 더...
-
이건 못참지
-
퓨ㅜ
-
트러스를 풀다 이로운을 풀다
-
2월 부터 림잇으로 랭윤 시작했고요 지금 사회계약론까지 진도 나갔는데 여러번 개념...
-
잘자요 2
-
13,14,15,22,28,29,30을 현장에서 다 푼다고??!!??
-
선생님이 중력렌즈현상 설명하는데 거기서 ”중력이 세진다“ 가 나옴 근데 어떤...
-
정떡 4
우정떡치기
-
지브리 어케하는거냐
거짓
이유는몰루
이건 거짓이에요
g(x)=lnf(x)에 대해 g(1)-g(0) = g’(c)를 만족시키는 c가 (0, 1)에 존재하며, 이때 해당 c에 대해 ln(f(1))-ln(f(0)) = f’(c)/f(c)에서 f(c)(lnf(1)-lnf(0)) = f’(c), ln(f(1)^f(c)) = ln(f(0)^f(c)*e^f(c))
정확합니다..!
ln f(x)를 새로운 함수로 정의하고 평균값 정리를 쓰는건가요
정확합니다!
e^f'(x) * f(0)^f(x) = f(1)^f(x)
양변에 로그를 씌우면
f'(x) + f(x)lnf(0) = f(x)lnf(1),
f'(x)/f(x) = lnf(1) - lnf(0)
이때 g(x) = lnf(x) 라고 하면
g'(x) = g(1) - g(0) 이므로
평균값 정리에 의해 위의 방정식의 실근이
열린구간 (0, 1) 내에 적어도 하나 존재함.
정확합니다!