수능을 시간 내에 완주하는 방법
게시글 주소: https://orbi.kr/00071147135
2026 The All Preview [250108].pdf
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다.
[출판한 대표 교재]
[저자 소개 및 인증]
[2025, 2026 과탐 공부법 가이드 (Ft. 사탐런)]
수능 생명과학은 타임어택 시험이라 여겨지곤 합니다.
생1, 생2 고난도 자료 해석 자체에는 다소 시간이 걸리기에
준킬러(수리 추론), 비킬러에서 시간을 줄이는 게 중요합니다.
[비킬러]
https://youtube.com/shorts/sk74UtUfp4I?si=KsExplSki0hEl3JN
[준킬러]
https://youtu.be/uJDAph14lR8?si=hASRSHr1njhYdwpZ
[최고난도]
https://youtu.be/G_VfEwl2TAk?si=cutnAwwE97-1BkWq
곧 표지 관련 소식으로 찾아뵐 듯 합니다
항상 글 읽어주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적분빡공하기 1
내신의 순기능 근데 내 수준: 수특 레벨2 간신히 푸는 수준 이긴해 ㅋㅋㅋ...
-
수학개존나잘하고싶다 12
열받아서 자러감
-
모자에 쌩얼이었는데 그 분이 내 자리 의자 치고 가서 죄송합니다 하는데 눈...
-
그냥 지1생2 하는게 젤 낫나요?? 지1생1 31베이스입니다.
-
인증도 하고 뭐 다 했는데 지금 생각하니까 존나 수치스러움
-
https://v.daum.net/v/8oq83dva1c 2022년에 한...
-
?
-
하 시발 6
힘들어
-
오버워치재밌는데
-
나도 별을 품고 싶다
-
5모 목표 1
국어 백분위 98 수학 백분위 90 영어 1 동사, 사문 2 동아시아사 연표...
-
왜 아직까지 못놓고 있지
-
얕게 아는 것은 많은데 제대로 할 수 있는 것은 아무 것도 없네요,,
-
요새는 미적 28번이 30번보다 어려운거 같은... 1
비주얼만 봐도...기분탓인가
-
기요미 목록 5
내 머리속에 이미 저장 완료되어있다
-
다들 오랜만이야 3
작년에 그래도 자주 왔는데 난 변한게 없네 그나마 변했다고 차면 감정선이 무뎌진만큼...
-
인생에 여유가 생기니까 25
느긋하게 음악 감상이나 영화보는 게 훨씬 재밋어지는듯 수험생분들 화이팅 !
-
지피티 지브리 ㅇㅈ) 16
흠
-
졸려 1
졸려
-
저 사실 이성애자에요… 그동은 속여서 죄송해요..
-
2분째 하는중
-
풀이 4
만덕 안줌이제
-
오빠들 여르비왓어염 22
뿌우
-
다들 주무세요 2
포스트잇 복습 끝나서 먼저 잘게요 내일 봐요
-
걍 수특 외우먄 되는거 아님?(진짜모름) 반박환영
-
꿈속으로 들어아면 시간이 상대적으로 느리게 흐른다. 필자는 이 명제를 활용하여 아주...
-
주변 재수학원에서 재원생만 된다고 다 빠꾸먹었습니다 응시할수 있는 방벚 없나여
-
야생의 코리갑이 나타났다!
-
생성제한 걸리네
-
이씨ㅂ 0
국어실력이 왜 이렇게 널뛰는거지
-
학교 2
=병신
-
인강 처음 들음 플러스 북도 해설 강의 해주시나 처음 들어서 모름 자이스토리 있는데...
-
금아이작아!
-
본인 공립인데 큰 차이를 못느낌 셔틀이 없다?이정도
-
크크크
-
군대 폰사용 월급 개떡상 정시확대 Pc주의 x맨 수능 안건드림 이재명 낙선시킴...
-
제곧내
-
둘이 다른건가
-
그냥 순수한 호기심임 수1,2빼고 오직 미적과 과탐만 놓고보면 어떤게 더 어려움?
-
우리집은 7층임
-
이상하게 닮았네 미치겠다 ㅋㅋㅋㅋㅋ
-
그냥 집에서 시간재고 본건데 2년 수능에 박으면 어디까지 가능할거 같음뇨?? 어차피...
-
ㄱㄱ혓
-
저도,한번,써봤네요..^^ 나름비슷~?ㅋ
-
이석기 이새끼는 내란죈데 어케 사형 안받은 거임
-
진짜 요즘 애들 왤케 순진하지가 않지 타락했다는건 아니고 내가 생각하는 그런 여고생...
-
본인 인증 레전드 댓글 10
1. 테스터 훈님 왜 여기 계세요 2. 의대 꼭 가자 3. 형이 과외해줄게
-
내란수괴 석열아 0
민주당이 정말 내란 정당이었다면 헌다 를 안 했다는 것 자체가 직무유기 아님?...
-
너무나도 무서워
혀누쌤도 분수형태 근수축에서 유리함수 수렴성 이용한 풀이 설명하시나요??
https://youtu.be/1W6xfg_knd8?si=efQgBEzw-L8ZRjz4
이거 말씀하시나요!
말씀하신 수렴성이 함수 개념 중 간격함수와 점근선을 활용해서 말씀드렸던 본 내용인 듯 합니다
(2026 디올 교재 보충 영상입니다! 수리 개념과 근간까지 담기에는 교재가 너무 Too much해져서,,,)
감사합니다 :)
네 맞아요! 저는 다른 선생님한테 배워서 내용자체는 조금 다르긴 한데 본질적으로는 같은 내용이네요!

[함수 해석]https://youtu.be/RM8_bCiNbPg?si=LVRzH_Kc-Y-kIegI
수열이나 함수 해석에 있어 선생님 분들 별로 이견이 있을 수 있지만
결국 궁극의 도는 유사한 것처럼 숫자 감각 배양해 주시는 분이라면
가장 먼저 시간 단축으로 말씀해주실 유형이 근수축, 유전 현상인 듯 해요!
[유전 현상]
https://youtu.be/egT6fIpMO6w?si=ph9OHjvvyO-K8QGh
잘은 모르오나 좋으신 분 같네요 댓글 감사합니다/-/

2024 대비때 디올N제 풀었었습니다 그때 잘풀었어요!어우,,, 살짝 날것의 모습도 좋아해주셔서 감사했습니다,,, 매년 교정할 때마다 보면 소진화시킬 것 투성이던데,,, 새해 소망하시는 바 모두 이뤄지시길 기원할게요 (o_ _)o (아마 현 첨부 페이지(수리 감각, 분수 연산)는 그 때 디올 or 디올 N제에도 있었던 내용으로 기억하긴 합니다!-! 2023 수능 토대 자료인지라)