수능을 시간 내에 완주하는 방법
게시글 주소: https://orbi.kr/00071147135
2026 The All Preview [250108].pdf
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다.
[출판한 대표 교재]
[저자 소개 및 인증]
[2025, 2026 과탐 공부법 가이드 (Ft. 사탐런)]
수능 생명과학은 타임어택 시험이라 여겨지곤 합니다.
생1, 생2 고난도 자료 해석 자체에는 다소 시간이 걸리기에
준킬러(수리 추론), 비킬러에서 시간을 줄이는 게 중요합니다.
[비킬러]
https://youtube.com/shorts/sk74UtUfp4I?si=KsExplSki0hEl3JN
[준킬러]
https://youtu.be/uJDAph14lR8?si=hASRSHr1njhYdwpZ
[최고난도]
https://youtu.be/G_VfEwl2TAk?si=cutnAwwE97-1BkWq
곧 표지 관련 소식으로 찾아뵐 듯 합니다
항상 글 읽어주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
교수님 불러도 되나요?
-
??
-
나보다 멍청해
-
밥먹고 커피한잔 0
거기에 연초 극락 가버려
-
학생한테 보냄 학생 일정 물어본 척 해야지
-
선착순 0
점메추받음.
-
기상 8
-
작년에 사문 지구했다가 지금 사문 한지 하는중인데 한지 외울게 너무많고 진짜 재미가...
-
계산할게 너무 많아
-
어렵지는 않다던데 어떤가요???
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
ㅈㄱㄴ
-
비트 죽이긴 하더라
-
아무리 많은 문제집을 풀어도 결국 돌고돌아 다시 보고 질릴때까지 보는 책같은거요
-
힘드넹 6
연하작용 힘든 어르신 한 분 밥드리는데 70분씩 걸리니..참
-
하지만 인생에서 생기는 문제의 절반 넘게는 해결해주는 거 같다…
-
지금 다니는 대학이 이름도 과도 맘에 들어서 부모님한테 상의 안 하고 해야되나 싶은...
-
칸기견들은 6모가 3일 남아도 그냥 감 ㅇㅇ
-
어려운편인가요..? 평균 혹시 올려주시나요?
-
얼버기 2
6시에일어난거글못올려서지금올림
-
퇴직 4년 반 남았다하심 충격먹음 행장급되긴 힘든가
-
아무래도 만족이 안됨….
-
추론력이 빠른 오르비언이면 왜인지 알거임...
-
국어 공부를 해본 적이 없는 고2 정시러인데… 뭘 해야 할지 막막해서...
-
인선 set01 22번 같은 거 넘 재밋네요 … 수능수학은 역시 중독적이야
-
어휴 다행이다 0
수행이 뭐라고 이리 떨렸는지
-
골라줘
-
혹시 있을까요...... 좀 이상한 이유이긴 한데 강민철 선생님 개념 강의 볼...
-
바로 다담으로 기출 한번 더 돌릴까, n제나 수특으로 넘어가고 하반기에 다담으로 다시 상기시킬까
-
캬 숙소에서 아침먹고 지금 토스봤는데 돈이 들어왔네?!?!?!? 좌흥
-
한계야슬슬
-
대학입학후 4
부모님한테 용돈 안받고살고있음 근데 월급이 40..투잡 마렵네
-
ㅈㄴ 당황스럽네 차라리 돈을걷어라
-
하 시11발 작년에 미성년자라 못갔는데 올해는 6평 3일 전이라 못가네 ㅅㅂ ㅋㅋㅋㅋㅋ
-
얼굴 반 이상 모자이크 하기 이러면 판단이 안 돼서 사람들이 뇌 뻬고 그냥 기만 달아줌 이거 ㄹㅇ임
-
이번달 교통대금 1
58,800원... 고딩때는 2만원대였는데 ㅠㅠ
-
시발련들아 2
형 생윤 수특 잃어버린거 찾았다
-
2025학년도 전국 39개 의대 신입생 출신자 연령 1
2025학년도 전국 39개 의대 신입생 출신자.. : 네이버블로그
-
현재 윤사 김종익으로 개념 1회독 했고 3모 40점이에요 지금이라도 응시생 숫자많은...
-
얼버기 10
글리젠 다 죽었네
-
윤동주 시인이 연희전문(연대 전신) 출신인 거 아는 사람과 방정환 선생이...
-
휴르비 해제 선언 10
-
만우절퀴즈 답 15
수학아니야ㅠ
-
여기 부자 너무많음...
-
아 배고파ㅣㅣㅣ
-
정상화 실검 2
(대충 네캎 내가 해냄 콘)
-
얼버기!!!!! 10
-
션티 키스타트 4회독쯤 하고 NF 2회독 했는데 뭔가뭔가… 아직 부족한 것...
혀누쌤도 분수형태 근수축에서 유리함수 수렴성 이용한 풀이 설명하시나요??
https://youtu.be/1W6xfg_knd8?si=efQgBEzw-L8ZRjz4
이거 말씀하시나요!
말씀하신 수렴성이 함수 개념 중 간격함수와 점근선을 활용해서 말씀드렸던 본 내용인 듯 합니다
(2026 디올 교재 보충 영상입니다! 수리 개념과 근간까지 담기에는 교재가 너무 Too much해져서,,,)
감사합니다 :)
네 맞아요! 저는 다른 선생님한테 배워서 내용자체는 조금 다르긴 한데 본질적으로는 같은 내용이네요!

[함수 해석]https://youtu.be/RM8_bCiNbPg?si=LVRzH_Kc-Y-kIegI
수열이나 함수 해석에 있어 선생님 분들 별로 이견이 있을 수 있지만
결국 궁극의 도는 유사한 것처럼 숫자 감각 배양해 주시는 분이라면
가장 먼저 시간 단축으로 말씀해주실 유형이 근수축, 유전 현상인 듯 해요!
[유전 현상]
https://youtu.be/egT6fIpMO6w?si=ph9OHjvvyO-K8QGh
잘은 모르오나 좋으신 분 같네요 댓글 감사합니다/-/

2024 대비때 디올N제 풀었었습니다 그때 잘풀었어요!어우,,, 살짝 날것의 모습도 좋아해주셔서 감사했습니다,,, 매년 교정할 때마다 보면 소진화시킬 것 투성이던데,,, 새해 소망하시는 바 모두 이뤄지시길 기원할게요 (o_ _)o (아마 현 첨부 페이지(수리 감각, 분수 연산)는 그 때 디올 or 디올 N제에도 있었던 내용으로 기억하긴 합니다!-! 2023 수능 토대 자료인지라)