-
아마 대부분은 수험생 분들은 아직 팔팔한 나이라서 문제가 전혀 없으실듯 하시지만...
-
hi orbi 3
wrong tyme know sea
-
난 ㅇㅈ하면 6
위로의 댓글 50개와 함께 메인글 갈 예정
-
문학 질문ㅠㅠ 6
목민관이 뭐하는 사람이에요?? 훌륭한 사람을 찾는사람이 목민관인가요? 벼슬하는...
-
밥 종류말고
-
지금 누워있어서 이상하게 나옴 다들 옛날에 찍은 사진 쓰는건가 그런거 없는뎅
-
모의고사가 내신보다 0.5등급 이상 잘나오면 정시 모의고사가 내신보다 안나오거나 별...
-
섹스으
-
인증 볼 때 마다 놀라네
-
아닌가 너무 착한 척함
-
여르비 아니고 중르비 하겠습니다.
-
Gcl 영상 보고 속으로 기립박수 쳤다
-
알파메일 ㄹㅈㄷㄱㅁㅊㄷ
-
ㅠㅠ
-
사진을 안찍음 ;
-
지브리 ㅇㅈ? 8
흠
-
물 떠와라 1
네에
-
지금 지브리 가지고 놀고 있는 애들은 다 기만러들이고 지브리같은 1차 보호막이...
-
수능때 이정도뜨면 11
내신 cc여도 설대 인문 or 연대 상경(내신5.0) ㄱㄴ?
-
어디 나도 한번 해볼까 어 씨123발
-
결정장애옴
-
ㄱㄷ
-
낯설다 너란 놈.. 꼭 정복하고야 말겠다 으흐흐
-
아니 다 읽으라고 만든건데 저게 말이 됨? 글면 독서도 발췌독 한다하지 납득이 안 됨..
-
변환해도 ㅇㅈ못할 사람들은 개추 ㅋㅋㅋ
-
만국의 추남들이여 단결하라
-
님들때문임 아.. 나 잠들때까지만 글쓰기를 멈추셈
-
똥싸고 앞뒤로 문지르면 수능을 잘본다고요?
-
정시 질문 있어요..! 10
안녕하세요 정시 처음해보는 현역입니다 말이 이상한데 그냥 한마디로 내신이 망한 것...
-
이건 ㄹㅇ 구라다ㅋㅋㅋ
-
지브리 1
기테
-
찐vs짭 5
-
본인 다리 긴데 3
기이다란데 뚜꺼움
-
지브리 보정기는 빼앗아가지 말아다오..
-
휴 3모 풀었다 2
조졌긴한데 풀긴했잖아 진짜 풀지말까 230번 고민했는데 국어 수학만이라도 풀어보잔...
-
분명히 쉬운데 정답률은 낮음 ㅋㅋ 미적 표점 부활의 신호탄이라 볼 수 있다. 29번...
-
Gpt도 내 얼굴을 정상화 시키지 못함
-
보정 잘됬노
-
수학 목표가 1이라 하루에 수학만 서너시간을 공부해야하는데 시간이 하루에 공부가능한...
-
치마가 이쁜거임 내가 입는단건 아니고;
-
한나라당 -> 새누리당 -> 자유한국당 -> 국민의짐힘 새누리당 고인 프리 닭근혜...
-
얘는 혼자 진심으로 그려줬네
-
수업의 흔적 1
이렇게 열심히 수업하는데 학생이 공부를 안함
-
풀이도 보고싶은데 대성강사분중에 그렇게 푸는 분 계신가요
-
어제 막차타고 기차에서 내렸는데 내 앞에 어떤 여성분이 고대 검은색 과잠을 입고...
-
고1 국어 문학 1
고1이나 고2 문학 지문 위주로 된 책 혼자서 풀어보고 싶은데 추천해주세요
-
챗지피티 시발련이 14
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
야 이 기요마 14
기요미야
-
지브리랑 3
나랑 ㄹㅇ 하나도 안닮앗네
고등학교내용 아닐걸여

대학과정임직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요

수상에서 복소수 배울 때 가르쳐줌 학교든 학원이든복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?