-
수요가 적을까 막말로 킹반인 소양에서 철학보다 세계사가 더 유익하지 않나
-
물리하다보니까 단순암기로 끝낼 수 있는게 많다는 것이 생각보다 좋은거엇음
-
국어 마르고 닳도록 3회독, 수특, 수완, 실모 수학 수능 기출의...
-
이번 여행에선 후쿠오카, 구마모토, 가고시마, 미야자키까지 방문한 도시마다...
-
김성호 현강 0
김성호 미적 현강 대치동 수강생 몇명정도 인가요
-
비키니 4
너 저리 안 '비키니'?? ㅋ
-
유튜브에서 종종 나오길래 함 복용해볼까 고민중...
-
이세계 유유자적 농가나 봐야지
-
맞팔구 0
생윤똥글꾼입니다
-
다들 맛저하세요 4
맛있는거 잘 챙겨 드시고 제 몫까지 두 배로 행복하세요
-
친구들이 5
저보고 노윤서 닮았다는데 남자가 닮으면 이상한거아닌가요?
-
이거 주면 하냐 9
난 깎음
-
비교하기 힘들겟지만 그래도 비교해보자면 어떤게 더 많나요? 둘중 하나 버리게요
-
ㅋㅋㅋㅋ
-
정시파 영어 0
영어 공부 해여되나요? 다른과목들이 노베라.. 3등급 나올 정도로만 맞추면 될까요
-
퇴적암 암기법 알려주시면 감사하겠습니다 1시감째 계속 줄줄 말하면서 외우는데 정신병 걸릴꺼 같습니다
-
목욕탕 1
와서 물에 젖은 하품물범
-
가지고 있는 달러를 엔화로 바꿀까? ㅋㅋㅋㅋㅋ
-
맨더비 믿는다 0
Manchester City ㄱㅈㅇ!!!
-
궁금
-
가고시마 애니메이트에서 어제 구매완
-
둘중 하나 선택 가능하면 뭐 고름?
-
계란참치당근죽 0
-
겠냐고
-
남들이 상처받아요 그냥 그렇다구여
-
사회성 박살에 커뮤충에 친구 없고 개찐따고
-
시발점 질문 0
현재 시발점 대수 하고있는데 예제까지는 거의 다 풀리는데 step up은 거의...
-
요즘은 경찰대 출신도 총경 진급률이 30~40% 라고 합니다 경찰대 출신임에도 경감...
-
생윤사문 하는데 이지영t가 생각보다 언급 안되는게 놀라운 강의력+단권화 딸깍...
-
30분컷하고 나머지 느긋하게 독서하기
-
김기현T 파데+킥오프 병행해서 1달 정도해서 끝내고 3모 풀어보니 어려운 3점...
-
진짜 너무 하기싫은데
-
이걸 지네.. 0
사실 이걸 이길 뻔 하네가 맞음
-
보고서도 쓰기 싫은데 과제 왜 이렇게 많아...
-
지인 결혼식, 병원진료, 정기휴무... 응 다이어트 하고 살 뺄게...
-
포장해서 집 가서 먹을라구요...
-
군만두 20년동안 먹은 기분이야
-
근거리 그브같은 느낌이라 캐니언한테 딱이긴해
-
라이즈같은 떵챔으로는 안되는거야..
-
작년에 학교에서 찍은거는 못쓰나…
-
3세트 가자 3
-
까비
-
사문 정법 이번 겨울에 시작해서 개념 2번 끝내고 가출도 한번했는데 모의고사 보면...
-
요즘같이 외모평균 계속 올라가는 시대에선 너가 어떤 발악을 하더라도 반드시 필연적으로 도태될거임
-
“성적 우수자들이 되레 역차별 당해”…美대입제도에 쓴소리 한 10대 창업자 6
하버드 등 최상위대 줄탈락한 잭 야데가리 ‘칼AI’ 창업자 학점 만점에 수능도...
고등학교내용 아닐걸여

대학과정임직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요

수상에서 복소수 배울 때 가르쳐줌 학교든 학원이든복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?