-
힘드네 기빨린다…
-
누가 구라라고 해줘
-
기계반란 일어나면 난 바로 처형일듯? 지랄같은 문제로 괴롭힌 죄
-
이제 글 그만 쓸게요 14
짜피 99%는 의미없는 글이니 뭐 심심한 때처럼 활동하겟음 이제 짜피 그떄가 더 옯창이엿음 지금보다
-
시발점 들을 때 우진T가 칠판에 판서하는 내용 전부 책에 옮겨적나요? 아니면 노트에...
-
꿀맛같은 휴식
-
하루에 4문제 푸는게 왜 힘든걸까
-
혹시 예과 기준 학점 4.0 이상 받는 난이도가 어느 정도인가요?
-
난도가 전에 비해 약갼쉬워졌다는글을 봤는데 난도나 퀄은 어떤가요???
-
23수능 특 42
언매 만점자 300명대고 미적 만점자 900명대인데 국어는 물이고 수학은 불이래...
-
중고딩 연애도 연애로 인정하는지, 하루사귄것도 인정하는지 궁금하네
-
담주에는 올라나..
-
김현우 앞부분 1
수2부터 들어서 미적시즌 못 들었는데 내신휴강기간동안 앞부분 영상만 구해서 들어도...
-
급신 신청 7
깜빡하고 안했는데 내일꺼 신청 안되네.. 몰래먹을까
-
조금 난이도 있는 문제를 풀었다 하면 대부분이 조건해석이 포인트인 문제인듯 뭐지...
-
밥사달라고 1
배고프다고
-
다음 논리전개 과정에서 오류를 찾아보시오
-
습
-
약간 인잘존예인싸 개착한 애들 많을것 같은 느낌임
-
오늘은 스벅 스킵할까 슬슬 다 마감해서 ㅈㄴ 먼데까지 가야됨
-
나형이라고 해도 기분이좋아요
-
오랜만에 맞팔구 2
-
꺄아아 2
-
잇올 2
일처리 느리네
-
ㄹㅇ
-
연대가 가고싶은 밤이구나
-
https://youtu.be/6c1saRPdWbU?si=nIffDGBMFMlqIc3...
-
웃엇어
-
말이 되냐
-
[친절한 경제] 경기 어렵다는데…대기업 절반 이상 '억대 연봉' 6
화요일 친절한 경제 한지연 기자와 함께합니다. 어서 오세요. (안녕하세요.) 요즘...
-
아레나로
-
짭심한아 1
공부해라 ㅡㅡ
-
하 티원은 2
lck 우승 언제하냐
-
와...
-
맞 팔 구 0
-
다외움 ㅋㅋㅋ 2일만에 20ㅈ;문 암기 ㅁㅌㅊ?
-
이왜진 ㄷㄷㄷ
-
촤ㅏㅏㅏㅏ비 0
와 빅토르가 그냥
-
ㄱㅅ ㅇㅈ 9
아무나 해줄사람
-
수학 2023대비 책 있는데 풀어보는게 좋을까요? 기출코드 할건데
-
사실이라면믿으시겠습니까 ㅆㅂ
-
오르비 그 어떤 글에 눈감고 이거만 쳐도 슬기로운 옯생하는데 문제없음
-
지금처럼만- 2
날 사랑해줘~
-
사탐런한 사문선택자인데요 현재 윤성훈 기능론갈등론을 공부하고 있습니다 처음으로...
-
엔티켓 산다? 6
진짜 산다?
-
뭘 가린거지 2
진짜 뭘 가린거지
-
이제 합류해서 수2 3주차부터 복영 볼 수 있던데 수2 1~2 주차 많이 중요함?
고등학교내용 아닐걸여

대학과정임직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요

수상에서 복소수 배울 때 가르쳐줌 학교든 학원이든복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?