-
노뱃뻘글러에서 11
유뱃공부황으로 컴백한 오르비언 있나요 처음부터 뱃지 말고요
-
오늘의 공부인증 3
조금 여유있게 수ㅏ면서 함 일요일이니까 1.국 엑셀러레이터 1일치 이팩트 독서...
-
사과게임 ㅇㅈ 1
다맞는건 운인듯
-
중고등학교때 손본애들은 눈정도 였는데 수능 끝나고 쌍수는 다들 기본에 코랑 윤곽...
-
수린이 메타 도는데 갑자기 이 사람 아는 옵붕이 있나 궁금해지네
-
다음 대통령은 당 색깔 안 보고 출신 학과 문이과 여부 보고 뽑을 거임 서울대 경영...
-
예전처럼 오르비를 하고있지 않아
-
ㅠㅠ 내신대비용으로...자이스토리랑 완자기출픽이랑 하이탑 있어요
-
보고싶어요..
-
수시러로 틀었을텐데
-
왤케 재미 없지
-
수학 2등급 정도가 듣기 괜찮은 쌤 누구 계실까요?
-
큰일남 4
3차 대전 일어나면 어떡함?
-
이수린이 누구너 2
언오피셜보이말고 모르겠는데
-
재수핑...
-
과제가 너무많음 4
ㅠㅠ
-
밸게 6
존잘지거국일반과vs 평범인서울의대
-
첫 정답자 2000덕 드리겠습니다!
-
확통런 0
삼반수생이여서 아직 확통개념도못했는데 해도괜찮을까요? 3모 공통은 다맞았고 미적은...
-
님들도 안누르잖음 난 똥글 보러 오르비옴 내가 읽지도 않은 칼럼글을 억지로...
-
.
-
https://orbi.kr/00072740989/ 글이 있네요!! 안읽으시더라도...
-
변시도 이제 CBT로 하는데...
-
질문 받아요 19
서울대 학부 다니고 있고 전공은 AI입니다 (주전공 전컴, 제2전공 수리통계)...
-
야추가 크던 뭐 하나는 해야되나보다 외적으로 특출난게 있으니까 쉴드도 오지게 받지...
-
닉네임 복귀 5
뭔가 좀 짜쳐서 다시 바꿈
-
종종 보여서 기쁩니다. 더 많이 유입이 되었으면 하는 바람입니다.
-
아 메인 뭐야 6
내가 발가벗은 느낌인데
-
띠따띠라 띠따다두따
-
나도 낄래 누구야
-
좆됫다ㅏㅋㅋㅋㅋ 오늘은 벚꽃보러 갓음 ㅋㅋㅋㅋㅋ 하ㅏㅏㅏ 이게 수험생 맞냐???
-
https://orbi.kr/00072740989/ 꽤 재밌어요
-
맨위에 문제고 아래는 해설임데 해설 읽다가 머리 타질거 같아서 손풀이 부탁드려요 ㅜㅜㅜㅜㅜ
-
내기억에 그때 새르비였는데 인상 깊긴 깊었나보군 ㅋㅋ
-
원장연이라는 나쁜말은 ㄴㄴㄴㄴㄴ
-
나도 호감 목록 13
물개물개 저능부엉이 고3기원 옯해원 순대렐라 열품타17시간담요단(닉이거맞나) 정상화...
-
다들 코사인법칙만 얘기하길래 신기했음
-
있는거임? 나이 많은 순으로 간다던데 07이면 13일 전에 갈 일은 없겠죠?
-
부모님은 날 그늘없이 키우셨는데 걍 내가 그렇게 못자란듯 내자신이 원망스럽다
-
이미지 써드려요 58
옯스타에서 써드렸던 분은 짧게,,, 그냥 이미지+하고 싶은 말 해서 최대한 길게...
-
아
-
도시락 사올까 1
ㅈㄱㄴ
-
과제도 다 했다 이말이야
-
빵댕이
-
기출은 0
기출은 개념인강 들을때부터 공부해야하나요?? 아님 과목별로 다른가욤 국어 일클...
고등학교내용 아닐걸여

대학과정임직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요

수상에서 복소수 배울 때 가르쳐줌 학교든 학원이든복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?