기하 문제.. (10000덕)
게시글 주소: https://orbi.kr/00071100313
반지름이 1인 원에 내접하는 사각형의 네 변의 길이의 곱의 최댓값을 구하여라.
찍맞 가능해보이는데 풀이도 점..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헌혈해두면 3
나중에 늙어서 기운없을때 보양식 개념으로 수햘받기 ㄱㄴ??
-
나머지가 다 허수일 리는 없을 것 같은데 미치겠네
-
소름 돋는 짤 0
-
얼른나에게최초합을줘
-
내 얘기임 조언좀 부탁함 새벽이라 뻘글올리는거 ㅈㅅ
-
ㅂㅂ 13
-
기차지나간당 6
부지런행
-
지2 선택자분들 이 사진 보고 알 수 있는 정보 있나요? 밤이다 그런거 말고
-
제발요
-
의대 가세요라
-
외대송도캠 2
25년8월 예정이라고 카카오맵에 적혀있는데 내년에 이전 예정인과들 이전된다는 말도는거있나요?
-
전 아스팔트에 갈린 손석구 많이들어봄
-
얼버기 5
-
덕코게임 5트) 5천덕 16
이건 좀 어렵지 아늘까
선생님 지금 이럴때가 아니에요
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
이거 풀면서 머리 비워요
이거 사인법칙 씀?
원본은 x인데 쓰는 풀이도 잇을 듯
안쓰고 푸는걸거같아서 ㅇㅇ..
무지..
gg
4?
사인법칙 활용하고 넓이 최대일때 구해서 산술기하평균 쓰면 되는 것가틈
원에 내접하는 사각형의 각 변의 길이를 a~d라고 할때 k는 길이가 각각 a, b인 두 선분이 이루는 각이라고 하면 ab*sin(k)+cd*sin(π-k)가 최대일 때는
한 변의 길이가 √2인 정사각형일 때임.
sin(k)=sin(π-k)이므로 (ab+cd)/2≥√abcd에서 답은 4
앗 지금 봣네요. 맞는 것 같아요 덕코 드리겟슴미다