아이디어성 경우의 수 문제 (10000덕)
게시글 주소: https://orbi.kr/00071073981
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하술마시거싶네 0
흠
-
아
-
생윤 현자의 돌 0
김종익 쌤 개념강의를 듣고 현자의 돌 가시감 문제집을 풀려고 하는데 괜찮을까요?...
-
구마유시 화이팅 4
지면 다시 LCK 안 볼게
-
설수리 절반...
-
그거 할 시간에 먹을거 게임 오르비에 투자 중
-
아 간지러워
-
수능때 언매 2나왔는디 강사들이 언매가 화작보다 표점도 높고 문풀 시간도 단축된드고...
-
융전 입결 1
25학년도 한양대 융전 입결 아시는분 있나요? 아시면 댓글좀 ㅠㅠ
-
군붕이는 슬프다 원래도 정치얘기 안 하지만 더더욱 조심해야할 위치에 있기에
-
첨 앎
-
주르비 3
음주비
-
그런가요? 하면 무슨 과목이 좀 컨텐츠 풀려있나요 인강이나 뭐나
-
쉬는시간에도 인강 못 보고, 야자시간만 가능
-
배성민의 시간이 왔다 경배하고 찬양해라 이판사판공사판막근사로 삼도극 30초컷ㄱㄱ
-
내가 과탐을 좀만 더 잘했더라면
-
노래 추처어어어언 14
ㅈㄱㄴ
-
온 몸에 불닭소스를 바르게 하고 뜨거운물에 담글거임 진짜겁나아픔
-
잼얘 없냐? 2
간다. (진짜 감)
-
과탐 등급컷 상승되나요?
-
집 감 9
-
ㅋㅋㅋㅋㅋ 4
2주석 입갤
-
현우진 너무 어려울 것 같아서 김기현 커리 쭉 타려고 지금 킥오프 끝내는 중이거든요...
-
산수계산실수 3
를 개많이해요ㅠㅠㅠㅠㅠ 3모 때도 23/2가 12.5라고 하고… 지금 수특 푸는데...
-
병신들 어쩌고 하면서 욕하던데
-
수능 출제 방식 23수능 이전으로 회귀 정시 확대 수시 축소
-
한국은 끝났다 0
https://youtu.be/Ufmu1WD2TSk?si=rmlqunRR5FkfDBdD
-
03이라 오랜만에 수능보는건데 한의대 목표고 최소 연고공 목표입니다. 그 이하면...
-
외모 또는 성격
-
목표는 건동홍 공대, 중경외시 문과이구요 군수중입니다 수능은 앞으로 두번더...
-
공태기왔는데 0
조언좀해주세요 ㅠ 진짜 공부하는게 온몸으로 거부감이 들어요
-
어찌 조언해줘야하지 내년이 끝인디.. 내후년에 내신때매 해도 안될수도있다라는걸 어떻게 말하지
-
07이고 이번 3모 14 22 29틀로 88점 나왔습니다 3모 80~84점 이하는...
-
영단어장 ㅊㅊ좀 1
-
우리학교는 이번에 중앙의 붙음
-
작수 기준 3초~2컷 정도인데 정시 전문 대치동 수학학원 찾고 있습니다. 괜찮은 곳...
-
차단 +3 24
-
21번 까지는 어떻게 해서 풀겠는데 22번은 진짜 풀지를 못하겠음
-
고3이고 학종은 아예 답이 없어서 교과 또는 정시 생각하고 있어요. 담임쌤 시간이...
-
차단 +1 6
-
문장 한줄 한줄 마다 끈덕지게 반응할수 있음 그냥 탈분극 재분극 없이 한방에...
-
중학수학도 모르는 정말 “진짜 노베”ㅇ라 고등수학과정부터 시작해서 대략 6개월정도...
-
6모 언제? 0
6모가 미뤄지나요? 아니면 땡겨지나요?
-
피곤할때 1시간 자고 공부하는것보다 졸음참고 하면서 공부하는게 더 뿌듯하게 느껴짐...
-
걍 사랑한다
-
그러니 여러분은 오르비에서 디씨자아를 너무 많이 꺼내지 말아주세요....
-
92세 김말숙 초반까지 보고 껐다
-
방학때 잠깐 다닐려는데 시스템이 어떻게 되는거임뇨?
기하러라 포기
아 몰라 이런건 1,0,-1 중에 하나랬음
-1?
풀수있는거맞아요??
나름 우수한 통통이입니다
좀 어렵
통통이인 게 문제군요
아 길이가 k구나
엠마이너스1Ck 곱하기 1 + ... +
적기가 귀찮음
아닌거 가튼데
아 중복도 되네
논술하면서 봤던거같은데 귀찮;;
으아ㅏㅏ
∑(i=1 to m) i * (m-i+1)^(k-1)
맞는것 같기도 한데 식이 완전 깔끔하게 정리돼요
Σ (i * (m-1)^(k-1)) for i
?
흑흑
어렵네
깔끔하게 기준이 뭔가요
깔끔하게라고 하면 애매하긴 한데;; 식이 정말 누가봐도 깔끔하긴 해서..
답 적어주시면 최대한 확인해볼께요
흠..
m=3,k=2일 떄 답이 14가 나와야돼요. 써주신 답은 10이 나와서,,
아 처음 접근을 찐빠냈네요
i는 1부터 m까지, i^k의 합?
캬
아니 맨처음에 진행양상을 파악할때 수열 내에서 최솟값의 위치를 고려 안하고 시작했네요....
원래 풀이임미다.
모든 m^k개의 수열에서 일단 1씩 더해진다. 그 중 1이 없는 (m-1)^k개에서는 최소항이 2 이상이므로 1씩 추가로 더해진다. 또, 그 중 2도 없는 (m-2)^k개에서는 최소항이 3 이상이므로 1씩 다시 추가로 더해지고,... 반복
1부터 m까지 (해당 최솟값을 갖는 수열의 갯수)×(최솟값)에서 소거꼴 찾았는데 원본이 더 간결하네용