회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00071061621
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학문제 풀어주실분 20
인스타에서 본건데 못풀겠음 풀어줘요 실근갯수7개
-
20회 4시간컷인데 계산 빡빡한거 몇개 있어서 생각보다 오래걸림 ......우흥
-
장난감 시계네 아기자기한
-
무지성n제 30번 19
맛들린 사람
-
윤씨 방청신청함 10
근데 이거 방청신청 뽑히면 나 티비에 나오는거임? 이건 좀 그렇군ㅋㅋ
-
게이되긴했음요 진짜 멋있긴하더라..
-
낭만부럽다나도할래..
-
요새 정시 어렵냐 11
18수능 23111 인데 수학 실력올리면 지방대 약대 가능?ㅋㅋ.. .
-
로켓대학교 의예과 로의
-
간쓸개 오답방법 0
작년 간쓸개 파이널 사서 풀고있는데 틀린문제 있으면 지문 뜯어보면서 오답 꼼꼼히...
-
국어 공부법 1
제가 국어 인강 안보고 하다가 재수하면서 강기분 수강 중인데 공부 방법 이게 맞는지...
-
손이 빠르면 머리가 고생을 안한다
-
동네 스카 다니는데 여기 사람이 별로 없음 그리고 룸이 3개임 (a,b,c,) 난...
-
기세 마치 폭포 실패는 no more victory or nope~
-
고대과잠 7
안입는데 버릴까
-
월 일
-
무슨의미지 키가 커서 닮았다는건지 잘생겨서 얼굴이 닮았다는 건지 모르겠다
-
오늘 뭔 날인가
-
하쿠 하울을 기대하면서 사진 넣어봤더니 벼랑위에포뇨 남자 애기가 나옴 ㅅㅂ
-
김승리 현강 0
여름방학때 김승리 현강 들으러 올라가려하는데 전화로는 여름꺼 미리 대기 못하나요?
-
그릏데용
-
가요이뉴짤 0
-
햇반이랑 닭가슴살이랑 파프리카랑 탄산수 자극적인거 최대한 줄이면서 절제하기가 4월...
-
왜나만보면도망가니
-
3월 21일: 물리학1 결심 3월 22일: 물리학1 공부 시작 다사 다난 물1...
-
몬생긴사람은 13
지브리 필터껴도 몬쉥겼네 하..지피티 현실고증 너무해
-
진짜 ㅈ같네 아직도 미련이 잇나봄..
-
두각학원 지하 39층 오우석 아들 개인 과외에서만 쓰는 어둠의 스킬 스블에 넣으려고...
-
일단 개념+ 마더텅? 으로 갈 생각인데 사문,생윤을 아에 몰라서 개념강의 누구를...
-
다음에도 오고싶다
-
하지만꼬치피는군 0
음..
-
1. 지문먼저 vs 문제먼저 다시말해서 풀때 어떤 시선의 이동으로 푸시나요? 각...
-
정병호 선생님 매출 올려주시는 착한 범바오
-
거의 다 재수함?
-
1분에 100덕씩 까임 (감소폭 2000->100으로 줄임) 하방은 만덕 풀이...
-
탈릅함 5
만우절?
-
어차피 6월 입대면 수능보고난뒤 12월에 전역하니깐 8월말 입대로 바꿔서 2개월...
-
어디 가나요?
-
안이 차오르고 있음
-
여기에 T가 너무 많아서 울었어
-
다이어트 1일차임
-
진짜로 폐강하면 나 울거야 아니지..?
-
지하철 타러 가다 각목 '날벼락'…송도서 묻지마 폭행 발생 3
[이데일리 채나연 기자] 인천 송도 길거리에서 지나가는 행인들을 폭행한 20대가...
-
그냥잘래 15
-
드리블만 다 듣고 어둠의 스킬 칼럼 써야지
-
이거 저만그런가요 요즘은 별로 웃기지도 않은 영상 봐도 웃겨서 웃음 못참겠던데
-
안뇽하세용 4
ㅎㅇㅎㅇ
-
어디가나요? 공대기준으로
g'(u)=lim 부분에서 h가 저런 식으로 쓰이면 안 됨
왜 안 되나요??
e^f(x+h)-e^f(x)로 적용이 되어야지
e^{f(x)+h}-e^f(x)가 되면 이상해짐
아 이해했어요 감사합니다
말 그대로 u에 대해 미분한 것인데요. 합성함수 미분을 증명하고 싶으시다면 x에 대해 미분한 것으로 증명해야 할 것입니다. 저렇게 식을 쓰면 u 자체를 변수로 보아 u로 미분한 것이 되는거죠.
아하 그렇군요 고수님 감사합니다 ㅠㅠ
여기에 첨언하자면,
뉴턴식에서는 미지수를 임의로 지정했을때(혹은 2개 이상이 나올때) '(프라임)이 뭐에 대한 미분인지 확실하게 보여주지 않는 문제를 확인할 수 있습니다.
그러기에 뭐에 대해서 미분한다는 의미기호가 확실히 들어간 라이프니츠를 이용하죠
윗 식은 f(x)에 대해 미분한 식이고, 선생님께서 내리시고 싶은 결론을 도출한 식은 x에 대해 미분한 것이므로 다른 것입니다.
제가 잘못 이해한걸수도 있는데 h'(x)=g'(f(x))가 어떻게 되는건가요
그냥 제가 임의로 g합성f = h라고 잡았습니다..
그러면 h'(x)를 미분하면 g'(f(x))f'(x)가 되어야지 g'(f(x))가 되는 이유가 뭔가요
오
h'(x)가 아니라 h(x)
h 미분하고 원함수에 f'(x)를 곱하면 맞게 나오네요
h로만 생각해서 형태만 본 것 같아요
감사합니다!!!
네 해결되셨다니 다행입니다
확실히 알았어요
다들 감사드립니다