기하 과목 선택하면 3차원 그림 스스로 그려야 하나요?
게시글 주소: https://orbi.kr/00070966582
2차원 그림도 스스로 잘 못 그리는 똥손인데...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영상 보기 귀찮은데 알려주실 심심한 사람 있나요
-
통통이도 할수 있습니다
-
8시간인데 도저히 10시간은 못 채우겠음 ㅠㅠㅜ 하루좡일하는 거 같은데도 할 게 너무 많다……
-
4덮 언제임 6
찾기 귀차늠 알려주셈
-
댓글 달아주세요 20
-
말안됨 진짜 설/문디컬 나오는거 아닙니까
-
왜냐고? 그야... 커뮤가 처음이였거든.. 너무나도 무서웠어 다 까더라고 그때가 11월 30일..
-
(2000덕) 어떤 분의 자작문제를 수정해드렸습니다 5
원본) https://orbi.kr/00072763458 첫 풀이과정 명시 정답자...
-
십만덕이면 뭐 못사요? 16
나도사고싶어
-
화학을 해야하는 이유 11
-
동선이 개꼬이네 몰라! 일단 가!!
-
아침에 일어나서 한다는 나쁜생각하기 싫은데
-
메타에안끼기 8
그것이 얇고 긴 메모장 옯생을 즐기는 법
-
무지성 화생 지방사는 사람들 잘 알걸? 무지성 화생 하는 (주로) 여학생...
-
날 그리워할 사람이 잇을까
-
미쿠 귀여워 10
-
오르비 안녕히주무세요 24
-
게이글쓰는걸로 맨날까이고 저격 당했는대 무시하고 꾸준히 쓰는거보면 사실 강철멘탈일수도 행복해라
-
그 숫자가 워낙 많아서 생지는 표본이 심각해지지는 않음
-
흠
-
대충 연고공~약수 정도 나오지 않을까 잘하면 지방의?
-
웬만하면 다 친하게 지내고 싶다
-
부활해라 게이야
-
작년 현역 3모 58에서 올해 3모 80 나옴 근데 미적은 해도 해도 는다는 느낌이 안 듦
-
이거들어바 14
굿
-
아무리 그래도 비서울 비대구에서는 아직도 무지성 생지가 많은데
-
캬캬캬 251130 해설 ㄱㄱㄱ
-
??
-
아 메타 안도니 15
괜히했노.
-
심지어 가난하기까지
-
안녕하세요호잇저는저능부엉이티비에저능부엉이입니다 어디감? 반수한다고 하지 않앗나
-
안녕하세용 4
늦은 인사 드려용
-
어떤지 아는법 잇나
-
근데 재릅하실려나
-
옯스타 홍보함 0
@cheri_tokki
-
디엠 나눴습니다 11
걱정하지는 않으셔도 될것 같습니다. 항상 현생 응원합니다 선생님
-
예전에 사람들 인증하면 댓글 20개는 달렸던거같은데
-
벌써 거의 도착이란말이지 으흐흐
-
ㅇㅈ 9
입술에 왜케 생기가 업지
-
이새기 편하게 대해주니까 사용자가 친구같지?
-
저는 오르비 시작한 거랑 여친한테 큰 거짓말 쳐서 밖에서 무릎꿇고 빈 거
-
엔제게임 수2를 끝내다 15주차 복습을 하다
-
원서를 군당 2개씩 쓸 수 있다고 하면 어떨 것 같음?? 빵꾸/펑크를 없앨 수...
-
2년만에 인증한다 15
이게 벌써 2년전이노.
-
괜히 불안함
-
나는 강태공 0
네 그렇습니다
최소한 구랑 정사면체 정육면체등 정형화된 도형은 그릴 줄 아셔야합니다
이런 그림도 스스로 그려야 하나요...?
벌써부터 두렵네요
저건 저 그림을 보고 2차원으로 표현하심됩니다
흠... 어렵네요... ㅜㅜ
문제를 푸는 원리나 논리 같은 것도 당연히 어렵겠지만
어릴 때부터 미술 시간에 입체감 있는 그림은 그리기 힘들어하던 사람인지라 그림 잘 못 그려서 기하 적응 못할까봐 걱정이네요...
음... 3차원을 2차원으로 표현하는 건 중요하긴 합니다
재능이 필요 없다고 하면 거짓말인것 같습니다
다만 평가원에서 고난도 공간도형 문제는 배제하는 편이긴 합니다
이게 문제 많이 풀면서 하는 연습으로 극복 가능한 부분인가요...?
그나마 다행이기는 하네요... 벡터랑 이차곡선 볼 땐 재밌어 보이고 해보고 싶고 그랬는데
공간도형 보니까 똥손인 제가 과연 이 과목을 해낼 수 있을지 걱정이 됩니다... ㅜㅜ
주어진 그림 가지고 해석하는 것까지는 어찌저찌 해보겠는데
주어진 상황 가지고 제가 생으로 3차원을 표현해야 한다면 과연 제가 해낼 수 있을지 미스테리네요 ㅠㅠ
똥 손인것 보다는 주어진 상황을 간단하게 단면화를 하는 작업이 더 중요하다고 봅니다
2d로 이해가 가능하다면 문제는 없을 듯 합니다
아직 제대로 공부해보지 않아서 단면으로 하는 이해, 2차원으로 하는 이해가 어떻게 이루어지는지 감은 안 오지만 이게 가능하면 그림 잘 그려내는지 아닌지가 크게 중요하지는 않다는 거죠?
네 그렇습니다
이차곡선에서 문제가 없는 정도라면 공간도형에서 그림에 대한 문제는 발생하진 않을듯 합니다
오오
감사합니다...
지금 N수 앞두고 여러 고민 중인데
기하를 선택하게 된다면 열심히 해보겠습니다!
넵 정 안된다 싶으면 미적이나 확통 선택도 방법입니다
굳이 기하를 고집하실 필요는 없으니
후회없는 선택하셔서 좋은 결과 만들기를 기원하겠습니다
정말 감사드립니다...!
보통 3차원을 상상하며 2차원 단면을 그리게 되긴 해요
그래도 본인 경험상 똥손이면 힘들긴 함
ㅠㅠ 진짜 고민 많이 되네요...
감사합니다
저거 재수할때 보고 당황해서 못풀었는데.. ㅋㅋㅋㅋㅋㅋ
저 3차원 그림을 2차원으로 바꿀수 있어야 하고
위치관계와 그림의 특징을 잘 이용할 수 있으면 됩니다..
저건 24학년도 문제중 제일 어렵다고 생각합니다~