23학년도 수능 기하 30번 공간벡터로 풀기
게시글 주소: https://orbi.kr/00070921386
삼각형 PQR의 넓이와, 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 알면 됩니다.
무슨 이유에서인지 점의 레이블을 걸어주지 않았습니다;;
당황스러우니 먼저 정하죠.(윗꼭짓점-밑면 삼각형 반시계방향 순으로 쓰는 것이 보통 일반적입니다.)
먼저 삼각형 PQR의 넓이를 먼저 구하겠습니다.
정사면체 ABCD와 정사면체 APQR는 닮음입니다.
따라서 삼각형 BCD와 삼각형 PQR은 닮음입니다.
(참고로 입체도형의 닮음비와 평면도형의 닮음비는 같습니다.)
그러므로 삼각형 BCD의 넓이와 두 정사면체 사이의 닮음비를 안다면 '넓이비=닮음비 제곱'을 이용하여 삼각형 PQR의 넓이를 구할 수 있습니다.
정삼각형의 경우 외심이 곧 무게중심입니다.
그리고 이 외심은 문제에서 주어진대로 구 S의 중심이므로 점 P와 점 O를 이어준 길이는 곧 반지름이 됩니다.
따라서 이등변 삼각형의 이미지가 나오게 되고 우리는 밑변에 수선을 내려 직각삼각형을 작도할 수 있습니다.
그런 다음 반지름에 정사면체에서 직선과 밑면이 이루는 각의 코사인을 곱하여 윗 그림과 같이 결국 AP의 길이를 알 수 있게 됩니다. 따라서 두 정사면체의 닮음비는 AP:AB=1:3입니다. 이것이 곧 삼각형 PQR과 삼각형 BCD의 닮음비이므로 둘의 넓이비는 1:9가 됩니다. 따라서 삼각형 BCD의 넓이를 9로 나눠준 값이 삼각형 PQR의 넓이가 되겠네요^^
구해주면(윗 그림 참고)
이제 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 구합시다.
그런데 평면 α는 구에 접하는 평면이므로 법선이 확실하게 보장되어있습니다. 따라서 이면각을 교선을 찾아 그대로 보기 보다는 법선과 법선이 이루는 각으로 봐도 상관이 없습니다. 즉 두 평면에 대한 법선벡터를 성분화할수만 있다면 내적을 통해 cosθ를 쉽게 구할 수 있는 것이죠.
성분과 좌표는 동일한 것이 아니지만 정사면체에서는 다음과 같이 좌표를 잡는것이 가능합니다.
좌표는 분수가 안나오도록 세팅하는 것이 관건입니다.(굳이 구의 반지름이 6이라는 것에 집착할 필요 없어요. 어차피 윗꼭짓점을 닮음의 중심으로 하여 다 닮음인 공간도형이므로 법선벡터끼리는 평행합니다.)
아무래도 삼등분점 상황, 무게중심을 구할때 3으로 나누는 것, 최소 단위의 숫자를 사용할 것을 모두 감안하게 되면 단위값을 3으로 설정하는 것이 좋습니다.
이제 각 평면에 대한 법선벡터를 구해 볼게요.
먼저 평면 PQR에 대한 법선벡터는 그냥 (1,1,1)로 잡으시면 됩니다. 어차피 윗꼭짓점을 닮음의 중심으로 하는 모든 정사면체의 법선벡터는 가장 간단하게 표현할시 (1,1,1)이 될 수 밖에 없습니다.
이제 평면 α에 대한 법선벡터를 구해봅니다. 구에 접하는 평면이므로 그 법선벡터를 알려면 구의 중심과 접점에 대한 정보가 필요합니다. 따라서 구의 중심은 (2,2,2), 접점은 (1,1,0)이므로 빼주면 법벡은 (1,1,2)
내적을 통해 cosθ를 구해주면
따라서 정사영은
제곱해주면 답은 24.
봐주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
조기퇴근 엔딩 0
-
6평 응시 1
6평 학원에서 쳐도 성적표 나오나??
-
재밋으면 읽어보려구 하는데
-
지표면으로 절대 나오지 않는 깊은 땅속에서만 사는 동물.. 우리가 발겸못한 그런거 있을거같은데
-
고2입니다 고3되기 전에 개기팔시 솔루션 한번 해보고 올라가면 좀 괜찮을거같은데...
-
[단독] 미, 한국 최대 염전 소금 ‘수입 금지’…강제노동 이유 2
국내 최대 단일 염전의 소금 제품이 장애인 강제노동으로 생산됐다는 이유로...
-
열이 안 내려 4
-
이상함... 일단 빨래 단축코스로 돌린 다음에 씻고 해 지기 전에 밖에 나가서 뭐라도 할 예정
-
고고혓!
-
웹만 그런가
-
그냥 스킵할 예정이신가? 3모 10일쯤 지났는데....
-
그냥일반 독서실 20만원 고민되네요
-
군기있다면 선배한테 개기면 어떻게 되나요?
-
씨발 중고딩들 바로 자습실 칸막이 옆 쉼터에서 고성방가하는 거 실화임?? 바로...
-
한번도 안봤었는데 조금씩 읽으니깐 생각보다 복기가 잘되구만
-
강펑 ㅋㅋㅋㅋ 2
-
고의는...
-
아 내 꿈과 희망이 이렇게 무너지네
-
3덮 0
언 확 생윤 사문 64 84(88) 2 44 44 5개월만에 학교가서 셤기간에펜잡음...
-
어떤 지문인니 궁금쓰
-
현역 3모 수학 높1 나온 개허수입니다 수학 공통 어느정도 자신있는데 뭔가 커리나...
-
너무 재밌당... 빨리 철학과 가고싶다
-
일요일에 보통 휴식하시는걸로 아는데 뭐 하시나요
-
안녕하세요. 경북대학교 의예과 23학번 지니입니다. 생명과학 1을 어려워하는...
-
북극곰 오열
-
오르비에 글 쓰기
-
당장.
-
진짜 좆간지난다 와우
-
아
-
메가패스 있음 개념 1회독 완료, 킬러 제외 기출 풂 헬프미 참고) 당연히 한완수는 실전개념 얘기
-
욕먹을까봐 걱정됨 칸트 선생님은 쓸데없이 깝치지 말란 정언명령과 곤경에 처한 타인을...
-
급함
-
작년에 엄마 사무소 화장실에 기어다니던 거 주워왔음. 당연히 흔한 코숏이라고 생각함...
-
모두 썩어라 1
철저히 썩어라
-
ㅇㅇ
-
의사가 욕 먹는 이유? 12
걍 동네 병원만 가봐도 알지않나? ㅈㄴ 고압적이고 환자를 가르치려 듦. 천룡인...
-
시간절약 ㅆㅅㅌㅊ
-
문학은 가져갈거 생각했는데 독서는 뭐 가져갈지 모르겠음 그읽그풀적인 방법론 좀 보여주고 싶은데
-
대전 사는데 서울보다 대구부산 사는 게 더 재밌을 거 같아요
-
혹시 시대기숙 4
시대 기숙이 아니더라도 반수반 같은 것도 있으려나요 되도록 시대가 좋긴 한데 .....
-
3월 더프 영어 0
이번 3월 더프 영어 수능때 나왔으면 1등급 비율 어느정도 였을까요?
-
안 씻을 거 같은 느낌인가
-
정석민T 1
정석민 선생님 비독원 완강했습니다 어드밴스드 해야할까요? 아니면 기출을 더 보는게 맞을까요?
-
Team 03 5
군필 5수생 드간다 수능 딱대
-
친구랑 벚꽃 보고옴 19
봄이네 진짜 좀 있으면 반팔 입겠다
-
강사 실수픽 3
독서 독학 문학 강민철 수학 범바오 영어 이명학 국사 내신짬밥 물2 배기범 지2 오지훈 사실 나임
-
개인실이라 그런지 잠도 많이 오고 그러는데 그냥 오픈형이 답이겠죠? ㅎㅎ..
-
뭘 하는게 좋을까요 공부만 계속하기엔 너무 지쳐서 의지를 회복해줄 휴식응 하라는...
-
대 황 칰
고능아
감사합니당
않이..
저는그냥 선 찍찍 긋고 풀래요
기하는 알아도 기벡은 잘 몰루..
사실 제가 푼 풀이는 굉장히 돌아간 풀이에여. 마지막처리 과정에서 길이 다 알 수 있으니 그냥 코사인 법칙 쓰면 됨 ㅋㅋ
그냥 정사면체 좌표 잡는거 적용해서 풀려고 억지로 공간벡터를 사용한 감이 있죠.