23학년도 수능 기하 30번 공간벡터로 풀기
게시글 주소: https://orbi.kr/00070921386
삼각형 PQR의 넓이와, 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 알면 됩니다.
무슨 이유에서인지 점의 레이블을 걸어주지 않았습니다;;
당황스러우니 먼저 정하죠.(윗꼭짓점-밑면 삼각형 반시계방향 순으로 쓰는 것이 보통 일반적입니다.)
먼저 삼각형 PQR의 넓이를 먼저 구하겠습니다.
정사면체 ABCD와 정사면체 APQR는 닮음입니다.
따라서 삼각형 BCD와 삼각형 PQR은 닮음입니다.
(참고로 입체도형의 닮음비와 평면도형의 닮음비는 같습니다.)
그러므로 삼각형 BCD의 넓이와 두 정사면체 사이의 닮음비를 안다면 '넓이비=닮음비 제곱'을 이용하여 삼각형 PQR의 넓이를 구할 수 있습니다.
정삼각형의 경우 외심이 곧 무게중심입니다.
그리고 이 외심은 문제에서 주어진대로 구 S의 중심이므로 점 P와 점 O를 이어준 길이는 곧 반지름이 됩니다.
따라서 이등변 삼각형의 이미지가 나오게 되고 우리는 밑변에 수선을 내려 직각삼각형을 작도할 수 있습니다.
그런 다음 반지름에 정사면체에서 직선과 밑면이 이루는 각의 코사인을 곱하여 윗 그림과 같이 결국 AP의 길이를 알 수 있게 됩니다. 따라서 두 정사면체의 닮음비는 AP:AB=1:3입니다. 이것이 곧 삼각형 PQR과 삼각형 BCD의 닮음비이므로 둘의 넓이비는 1:9가 됩니다. 따라서 삼각형 BCD의 넓이를 9로 나눠준 값이 삼각형 PQR의 넓이가 되겠네요^^
구해주면(윗 그림 참고)
이제 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 구합시다.
그런데 평면 α는 구에 접하는 평면이므로 법선이 확실하게 보장되어있습니다. 따라서 이면각을 교선을 찾아 그대로 보기 보다는 법선과 법선이 이루는 각으로 봐도 상관이 없습니다. 즉 두 평면에 대한 법선벡터를 성분화할수만 있다면 내적을 통해 cosθ를 쉽게 구할 수 있는 것이죠.
성분과 좌표는 동일한 것이 아니지만 정사면체에서는 다음과 같이 좌표를 잡는것이 가능합니다.
좌표는 분수가 안나오도록 세팅하는 것이 관건입니다.(굳이 구의 반지름이 6이라는 것에 집착할 필요 없어요. 어차피 윗꼭짓점을 닮음의 중심으로 하여 다 닮음인 공간도형이므로 법선벡터끼리는 평행합니다.)
아무래도 삼등분점 상황, 무게중심을 구할때 3으로 나누는 것, 최소 단위의 숫자를 사용할 것을 모두 감안하게 되면 단위값을 3으로 설정하는 것이 좋습니다.
이제 각 평면에 대한 법선벡터를 구해 볼게요.
먼저 평면 PQR에 대한 법선벡터는 그냥 (1,1,1)로 잡으시면 됩니다. 어차피 윗꼭짓점을 닮음의 중심으로 하는 모든 정사면체의 법선벡터는 가장 간단하게 표현할시 (1,1,1)이 될 수 밖에 없습니다.
이제 평면 α에 대한 법선벡터를 구해봅니다. 구에 접하는 평면이므로 그 법선벡터를 알려면 구의 중심과 접점에 대한 정보가 필요합니다. 따라서 구의 중심은 (2,2,2), 접점은 (1,1,0)이므로 빼주면 법벡은 (1,1,2)
내적을 통해 cosθ를 구해주면
따라서 정사영은
제곱해주면 답은 24.
봐주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 되긴함
-
앙버터 이후로 이름값하는 애는 처음 봤어요
-
아 다욧 안할래 0
뱃살 좀 나온다고 그거 볼 일 있겠나 어차피 1키로도 안 찔 건데 별일 업ㄹ겠지
-
현재 재수생이고 이번 3모 공통 2틀 (14,22) 선택 5틀...
-
ㅇㅈ 0
ㅢㅏ
-
어케할까요
-
오늘 공부한거 2
제로
-
제가 시대인재에서 변춘수 선생님의 강의를 처음부터 수강하고있었는데 이번 내신휴강때...
-
일이나 아니면 개인적인 취미라던가 해서 어떻게든 바쁘면 자연스럽게 연애고 외롭다고...
-
침대 가고싶ㄷ 1
일류 대학은 침대 그 다음은 와플대
-
인생망함 0
누가 좀 구해줘
-
1년 6개월이 벌써
-
미적과외 잡음 문제는 내가 다 까먹었다는거임
-
난 사실 0
09년생임. 조졸하고 입학함 반박시 님말이 맞음
-
열품타 같이하실분 모십니다. 제가 공부안하면 스벅커피쏩니다 0
안녕하세요 시골에 사는 관계로 근처에 재종반이나 독재학원이 근처에 없어서 자취방을...
-
있었으면 좋겠다
-
놀아줘 2
나랑
-
왤케 개을러졌지 4
아이고 아이고 참고 '게으르다' 말고 '개으르다'도 표준어임
-
돈 아끼고 시간 아끼고 솔로가 좋다.....
-
저 진짜 개념 노베부터 시작해서 시발점부터해서 강기본 쎈 수특 개념 문제집 사니까...
-
물1 공부기록 2
방인혁t expert zero 끝! 그리고 오늘 물1 개념 2회독까지 필수본으로...
-
옯비언들아 6
애니 추천해라
-
올?백
-
연세대!!
-
봄되니까 2
다 연애하네 나도..해야지 언젠가는
-
촉이 오거나 쎄했던 썰 10
댓글로 풀고 가기
-
이거 육진 방언과 국어사 글 금방 끝날 수도
-
Kbs랑 앱스키마 둘다 EBS관련 강의?로 보이는데 차이점이 무엇인가요?? +김승리...
-
시대컨 풀어본적이 없어서 풀어보려는데 알려주실수있나요
-
챗지피티한테 작품 비평문 써달라고 하니까 ㅈㄴ 현학적으로 쓰네 0
1. 정지된 시간의 망령 – 과거에 사로잡힌 자들의 우주 『카우보이 비밥』은...
-
아네로스삿음 11
내인생도 갈때까지 가는구나 시발 ㅋㅋ
-
피램 1권 1회독 끝나가는데 비문학도 하고 하려면 ebs 기출 분석은 언제...
-
미적분 스블 1
생각의질서랑 어삼쉬사 했고 실전개념은 스블 들을 예정입니다 바로 스블 듣기엔 너무...
-
잘자라 7
-
이 공허함 머지
-
공부 시작 시간 0
몇시부터가 이상적일까요??
-
그 느낌이 잘 맞는 편인가요
-
문제가 더러워서 절고 있어
-
설레면서 봤는데 데인게 아니라 화상을 입었다..
-
마치 공무원 시험처럼 평생 직장 보장인데 1년이 대수야? 되기만 하면 된다 이런...
-
어릴때 손재주 ㅈㄴ없었는데 메디컬 가면 적응 못하나요? 4
학교다닐때 따라 만들기 있잖아요 종이접기, 뜨개질, 뭐 조립하기 등등 개못했고.....
-
영어 주간지 풀고 바로 ㄱㄱ혓!
-
이거 왜케어려움 6
22년 고2 6월 30번 평가원 삼각함수 킬러들 그냥 씹어먹는 난이도같은데 어려운게맞는거죠?
-
What's up, guys? This is Ryan from Centum...
-
진짜존나힘드네 4
일단 자야지 죽겠다 ㅅㅂ
-
확통런 고민 4
원래 수의대가 가고 싶어서 이과 밀다가 전혀 가망 없는 것 같아서 문과로 틀었습니다...
-
님들 생각에 4
N수 할 때 돈 아낄 건 최대한 아껴야 한다(1) vs 될 수 있는 만큼 최대한...
-
그냥 강e분 할까요? 국어를 젤 못해서 걱정입니다...
-
ㅅㅂ 군대 가려고 뭐하는 짓이노..... 필기 90점으로 합격하고 이제 실기...
고능아
감사합니당
않이..
저는그냥 선 찍찍 긋고 풀래요
기하는 알아도 기벡은 잘 몰루..
사실 제가 푼 풀이는 굉장히 돌아간 풀이에여. 마지막처리 과정에서 길이 다 알 수 있으니 그냥 코사인 법칙 쓰면 됨 ㅋㅋ
그냥 정사면체 좌표 잡는거 적용해서 풀려고 억지로 공간벡터를 사용한 감이 있죠.