23학년도 수능 기하 30번 공간벡터로 풀기
게시글 주소: https://orbi.kr/00070921386
삼각형 PQR의 넓이와, 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 알면 됩니다.
무슨 이유에서인지 점의 레이블을 걸어주지 않았습니다;;
당황스러우니 먼저 정하죠.(윗꼭짓점-밑면 삼각형 반시계방향 순으로 쓰는 것이 보통 일반적입니다.)
먼저 삼각형 PQR의 넓이를 먼저 구하겠습니다.
정사면체 ABCD와 정사면체 APQR는 닮음입니다.
따라서 삼각형 BCD와 삼각형 PQR은 닮음입니다.
(참고로 입체도형의 닮음비와 평면도형의 닮음비는 같습니다.)
그러므로 삼각형 BCD의 넓이와 두 정사면체 사이의 닮음비를 안다면 '넓이비=닮음비 제곱'을 이용하여 삼각형 PQR의 넓이를 구할 수 있습니다.
정삼각형의 경우 외심이 곧 무게중심입니다.
그리고 이 외심은 문제에서 주어진대로 구 S의 중심이므로 점 P와 점 O를 이어준 길이는 곧 반지름이 됩니다.
따라서 이등변 삼각형의 이미지가 나오게 되고 우리는 밑변에 수선을 내려 직각삼각형을 작도할 수 있습니다.
그런 다음 반지름에 정사면체에서 직선과 밑면이 이루는 각의 코사인을 곱하여 윗 그림과 같이 결국 AP의 길이를 알 수 있게 됩니다. 따라서 두 정사면체의 닮음비는 AP:AB=1:3입니다. 이것이 곧 삼각형 PQR과 삼각형 BCD의 닮음비이므로 둘의 넓이비는 1:9가 됩니다. 따라서 삼각형 BCD의 넓이를 9로 나눠준 값이 삼각형 PQR의 넓이가 되겠네요^^
구해주면(윗 그림 참고)
이제 평면 PQR과 평면 α의 이루는 각을θ(단, 0<θ<½π)라 할때 cosθ를 구합시다.
그런데 평면 α는 구에 접하는 평면이므로 법선이 확실하게 보장되어있습니다. 따라서 이면각을 교선을 찾아 그대로 보기 보다는 법선과 법선이 이루는 각으로 봐도 상관이 없습니다. 즉 두 평면에 대한 법선벡터를 성분화할수만 있다면 내적을 통해 cosθ를 쉽게 구할 수 있는 것이죠.
성분과 좌표는 동일한 것이 아니지만 정사면체에서는 다음과 같이 좌표를 잡는것이 가능합니다.
좌표는 분수가 안나오도록 세팅하는 것이 관건입니다.(굳이 구의 반지름이 6이라는 것에 집착할 필요 없어요. 어차피 윗꼭짓점을 닮음의 중심으로 하여 다 닮음인 공간도형이므로 법선벡터끼리는 평행합니다.)
아무래도 삼등분점 상황, 무게중심을 구할때 3으로 나누는 것, 최소 단위의 숫자를 사용할 것을 모두 감안하게 되면 단위값을 3으로 설정하는 것이 좋습니다.
이제 각 평면에 대한 법선벡터를 구해 볼게요.
먼저 평면 PQR에 대한 법선벡터는 그냥 (1,1,1)로 잡으시면 됩니다. 어차피 윗꼭짓점을 닮음의 중심으로 하는 모든 정사면체의 법선벡터는 가장 간단하게 표현할시 (1,1,1)이 될 수 밖에 없습니다.
이제 평면 α에 대한 법선벡터를 구해봅니다. 구에 접하는 평면이므로 그 법선벡터를 알려면 구의 중심과 접점에 대한 정보가 필요합니다. 따라서 구의 중심은 (2,2,2), 접점은 (1,1,0)이므로 빼주면 법벡은 (1,1,2)
내적을 통해 cosθ를 구해주면
따라서 정사영은
제곱해주면 답은 24.
봐주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
확통 질문이요 3
어디가 틀린건가요??
-
안녕하세욥 10
눈팅만 하다 이번에 가입했네요 ㅎ
-
큐브 마스터들 3
왜 다 존잘 존예지 무슨 인스타보는줄
-
경쟁률 1:16이고 1명뽑는데 최종등록인원 0명이야 근데 추가 예비순위 1~5차...
-
뭔가 비정상같은데
-
무채색에 디자인 깔끔했으면 좋겠는데..
-
정보글) 본인이 갤럭시 혹은 안드로이드 유저이면서 수험생인데 인터넷 조절을 못한다면 볼 것 4
안녕하세요, 이제부터 글쓰기 편하게 반말하도록 하겠다. 원래 인터넷에 글 싸는 것...
-
경기도 일반고 총 3.68이고 국영수사과로는 3.8등급인데 모의고사는 1~2등급...
-
독서 day1 8번문제 답 2개인것 같은데 푸신분계신가요?
-
설수의를 향하여
-
프사가 강해린이라 그런가... 굳이 정정 안하니까 잘못 아는 사람들 많네;
-
이름만 파서빌리티나 스테틱스 였으면 진심 90퍼가 확통함
-
공통을 많이 틀릴수록 좋음 아니면 확통을 많이 틀릴수록 좋음??
-
ebs는 할꺼라 빼고…. 주간지만 풀면 너무 적지않나
-
ilium iliac 둘다 장골(엉덩뼈)라는 뜻인것같은데 차이가 있나요? 뭔가...
-
할게 너무 많아 1
자료에 치어 뒤지겟네
-
누구보다도 상세하게 풀어볼게요. 오르비 독스에도 올리고 싶은데 어케함
-
화학 ㅈ댄거같다 4
최근 생각이다.
-
10월 말 11월 초에 짱 쉬운 수학 하나랑 기출문제집 하나 20일간 벼락치기만...
-
쉽고 깔끔하고 재밌는문제 <<< 시간 때우기 goat
-
수학하고싶다 0
노래들으면서 수학문제 풀기가 유일한 낙인데
-
등급만 떡하니 박제해놓고 학력저하니 원서 성공이니 컨설팅 홍보용이니 핵빵이니 하는게...
-
너무행복해요 6
제가 하고싶은 걸 드디어 할 수 있게 됐어요
-
이건뭐지ㅋㅋ 12
대체뭐하는분일까 문과면서생2는어째서
-
너무 어려운건 말고…
-
이신혁t 모고 0
이신혁t 라이브 중인데 on 모의고사 1회하고 3회 없이 2회만 온거임?
-
CC 커플들 데이트 장소로 딱이네요~^^
-
생윤러들 0
선택 한 번씩만 하고 가주셔요
-
사문 생윤으로 사탐런 했는데. 생윤 너무 어려운거 같음요.. 근데 버리기는 좀...
-
진짜 되긴함
-
앙버터 이후로 이름값하는 애는 처음 봤어요
-
아 다욧 안할래 0
뱃살 좀 나온다고 그거 볼 일 있겠나 어차피 1키로도 안 찔 건데 별일 업ㄹ겠지
-
현재 재수생이고 이번 3모 공통 2틀 (14,22) 선택 5틀...
-
ㅇㅈ 0
ㅢㅏ
-
어케할까요
-
오늘 공부한거 2
제로
-
제가 시대인재에서 변춘수 선생님의 강의를 처음부터 수강하고있었는데 이번 내신휴강때...
-
일이나 아니면 개인적인 취미라던가 해서 어떻게든 바쁘면 자연스럽게 연애고 외롭다고...
-
침대 가고싶ㄷ 1
일류 대학은 침대 그 다음은 와플대
-
인생망함 0
누가 좀 구해줘
-
1년 6개월이 벌써
-
미적과외 잡음 문제는 내가 다 까먹었다는거임
-
난 사실 0
09년생임. 조졸하고 입학함 반박시 님말이 맞음
-
열품타 같이하실분 모십니다. 제가 공부안하면 스벅커피쏩니다 0
안녕하세요 시골에 사는 관계로 근처에 재종반이나 독재학원이 근처에 없어서 자취방을...
-
있었으면 좋겠다
-
놀아줘 2
나랑
-
왤케 개을러졌지 4
아이고 아이고 참고 '게으르다' 말고 '개으르다'도 표준어임
-
돈 아끼고 시간 아끼고 솔로가 좋다.....
-
저 진짜 개념 노베부터 시작해서 시발점부터해서 강기본 쎈 수특 개념 문제집 사니까...
고능아
감사합니당
않이..
저는그냥 선 찍찍 긋고 풀래요
기하는 알아도 기벡은 잘 몰루..
사실 제가 푼 풀이는 굉장히 돌아간 풀이에여. 마지막처리 과정에서 길이 다 알 수 있으니 그냥 코사인 법칙 쓰면 됨 ㅋㅋ
그냥 정사면체 좌표 잡는거 적용해서 풀려고 억지로 공간벡터를 사용한 감이 있죠.