(짧은 칼럼) 1/x을 적분하면 무조건 lnlxl+C라 할 수 없는 이유
게시글 주소: https://orbi.kr/00070920254
lnlx+3l의 부정적분도 비슷한 예시가 될 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그만깝칠게요 15
못해못해 ㅅㅂ 하지마세요이거
-
잔다리 1
좋은 밤 돼
-
워낙 국어 노베이기도하고 , 암기식 머리라 글을 너무 늦게 읽어서 시험볼때 진짜...
-
얼버기 7
-
흠; 좆됏네
-
생윤은 칸트를 잘 가르치고 있다 - 수험생을 위한 칸트 정리편 5
*이 글은 필자의 뇌피셜이 난무하는 글입니다. 오늘은 교육 과정에서 멀리 뛰기...
-
궁금한거잇으신분 5
이래봐도 나름 6수 160 80 8의 스펙을 가지고잇음
-
주변에 여는가게가없네
-
상어 먹고 싶다 3
.
-
밸런스게임하자 27
밸런스게임 시켜줘 잘 답해볼게
-
서울대 3명보낸??평반~ㅈ반고이구... 모고 17 18번도 겨우풀수준이고 시험이...
-
굿나잇 2
ㄴㅇㅂㅈ
-
돈줘 2
돈내놔
-
너무졸리네 1
흠
-
인생 업적 1
구구단 외웟음
-
-
뻥임 안 보여줌 몇개 잇긴함
-
아이유 우울시계 이거 반복해서 들으면 눈물이 쏟아짐...
-
수능수학적 정보가 많은 칼럼보다 좀 경량급 칼럼이 호평받은거 나름 충격이라...
-
자다가 깼네.... 안녕하세요? 처음 뵙겠습니다
-
ㄹㄹㄹㄹ 이러고 잇으면 머하나
-
사문 인강 1
임정환 듣다가 27강 도표에서 걸쳐서 무슨말을 하는지 도통알수없고 판서랑 책이랑...
-
현역 고3이고 이번 3모 화작 3개틀리고 74점 나와서 2떴는데 언매 해도...
-
새벽이라우울하군 1
잘까
-
연계였어서 그냥 쌩으로 물어봐도 될 문항을 빈칸형으로 15번에 박아서 물수학이란 평을 듣게함
-
다 나가네 걍 1
으음
-
5등급 현역 정파 국어 공부법 좀 알려줘 제발!!!! 간절함!!!!! 3
잉단 난 정신 개늦게 차림 고1 2학기때 정신 차린줄 알앗는데 아니엿고 고2때가...
-
수의대
-
더 푸는건 시간 좀 아까운데 그냥 자야겠다
-
D-221 0
영어단어 영단어장 day1 영어 어려웠던 문장 복습 힘 빼고, 휴식기간 가졌으니...
-
또 풀어볼까
-
그냥 순수하게 재미씀 읽고있으면
-
N티켓 괜찮네 4
쉬워보여서 안풀려다가 밤에 심심해서 푸는중 문제가 깔끔해서 재밌네
-
오이이아이오오이이이아이
-
못 막음
-
영상 봤음
-
이것만 올리고 자러갈게요
-
이겨다
-
선착순한명 3
차단해드림 차단자리너무여유로움
-
고2 상위권 남학생, 생기부 너무 대충하는데 진짜 속터지네요. 내가 대학가냐 니가 대학가지…
-
슬슬 3
새르비 합류선언
-
그런거임
-
좀 채울까 82872같은 애들
-
니가 들어가라
-
정시일반 의대 기준 3년 풀로 박았으면(현역 재수 삼수) 일반적으로 각이 나온다고...
-
예전에 풀었던 거 업로드
-
포도먹는중 6
이거맛있네요
C1이랑 C2랑 안 같아도 되는 건가요??
네네 다를 수 있습니다.
한 함수 적분할 때 구간마다 적분상수가 다를수도 있는 거니까 그런 거조?
근데 개념이나 해설강의들보면 항상 ln절댓값+C1 하던데 오개념인가요?
"한 함수를 적분할 때 구간마다 적분상수가 다를 수도 있다"라고 생각하시면
좀 위험할 수 있습니다.
기본적으로 피적분 함수가 '연속'일 경우
적분이 된 함수는 자동적으로 미분가능하게 되어
적분 상수가 동일해집니다. (cf. 도함수 연속->원함수 미분 가능성 보장)
이 점을 염두해주시고
'피적분 함수의 정의역이 불연속으로 끊겨 있는 상태에서 (ex. 1/x)
적분할 때 구간에 따라 적분상수가 다를수도 있다.'
이렇게 생각하시는게 좋을 것 같습니다.
말씀해주신 개념/해설강의 같은 경우에는
앞뒤 맥락과 설명하는 상황을 추가적으로 파악해야하기에
확답을 완전하게 드리기는 어려울 것 같습니다.
현우진 선생님 킬링캠프 모의고사 28번에 나온 소재네요ㅎㅎ
저도 고려안하고 틀렸던…
아 그런가요? 킬링캠프에 이 소재가 이미 나왔는 줄은 몰랐네요ㅋㅋㅋ
이거 소재로 한 문제 사설에서 봤어요
그렇군요! 알려주셔서 감사합니다! ㅎㅎ
고등학교 수학에서 불연속함수 적분 안시키지 않나요??
가우스 함수같은 불연속함수 자체를 적분한다는 의미가 아니라,(당연히 고등학교 교육과정에서 불연속함수의 적분은 다루지 않습니다.) 연속함수를 적분할 때 정의역이 끊겨있어 구간별로 적분해야되는 상황(적분 상수가 달라질 수 있음)을 말씀드린 거에요!
예를 들어 점근선이 존재해서 한 지점을 기준으로 정의역이 끊겨있는 상황이라고 합시다. 다만, 그 지점을 제외하고 나머지 부분은 다 연속이고요(1/x의 경우 x=0을 경계로 정의역이 끊겨있음)
이 경우 함수의 구간을 나누어 적분하면(x>0,x<0) 구간별로 적분 상수가 달라질 수 있다라는 의미입니다!
아하! 친절한 설명 감사드립니당><
넵! ㅎㅎ