(짧은 칼럼) 1/x을 적분하면 무조건 lnlxl+C라 할 수 없는 이유
게시글 주소: https://orbi.kr/00070920254
lnlx+3l의 부정적분도 비슷한 예시가 될 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아무리 그래도 비서울 비대구에서는 아직도 무지성 생지가 많은데
-
캬캬캬 251130 해설 ㄱㄱㄱ
-
??
-
아 메타 안도니 15
괜히했노.
-
심지어 가난하기까지
-
안녕하세요호잇저는저능부엉이티비에저능부엉이입니다 어디감? 반수한다고 하지 않앗나
-
안녕하세용 4
늦은 인사 드려용
-
어떤지 아는법 잇나
-
근데 재릅하실려나
-
옯스타 홍보함 0
@cheri_tokki
-
디엠 나눴습니다 11
걱정하지는 않으셔도 될것 같습니다. 항상 현생 응원합니다 선생님
-
예전에 사람들 인증하면 댓글 20개는 달렸던거같은데
-
벌써 거의 도착이란말이지 으흐흐
-
ㅇㅈ 9
입술에 왜케 생기가 업지
-
이새기 편하게 대해주니까 사용자가 친구같지?
-
저는 오르비 시작한 거랑 여친한테 큰 거짓말 쳐서 밖에서 무릎꿇고 빈 거
-
엔제게임 수2를 끝내다 15주차 복습을 하다
-
원서를 군당 2개씩 쓸 수 있다고 하면 어떨 것 같음?? 빵꾸/펑크를 없앨 수...
-
2년만에 인증한다 15
이게 벌써 2년전이노.
-
괜히 불안함
-
나는 강태공 0
-
조의금은 여기로 보내주세요.
-
수학 선택과목이랑 과탐 뭐 할지 추천받습니다. 참고로 작년에는 외우는게 너무 싫어서...
-
방금 많이 충격받음
-
야발
-
ㅇㅈ메타임? 3
오늘하면 역겹다고 저격먹을 삘이군
-
현돌 문제집 0
보통 킬쿼모는 6월 이후에 하나욥…? 제가 잘 몰라서… 생윤 개념 잡힌 현역이...
-
ㅇㅈ메타할거면 1
나 자기 전에… 얼른…
-
제목이 상당히 긴데..분량이 많지는 않아요. 아직 미완인 부분 제외하고 35쪽정도...
-
ㅇ?
-
이거 난이도 어떰 객관적으로?? 함수 개수 문제중에 나름 역대급 같은데 왤캐 정답률...
-
플리 인증 6
옛날플리고 잘 안써서 곡이 적음
-
수고하셨습니다 8
안녕히 주무세요
-
스트릿이라 해야하나 그런 느낌을 원함
-
걍 일하고 과외준비하고 과외하고 하루정도 방에혼자있는 개인용으로 쓰는시간 잡으면 걍...
-
남들이 n수 힘들다는디 걍 난 학교 안가고 좋은거같은데ㅋㅋ 술마시고 노는거 이런거 안좋아하긴함
-
그런 의미에서 ✨명반 홍보✨
-
ㅇㅈ 9
전에 보신분들은 모른척해주세요??
-
어제는 이름에게 듣다가 졸라 슬퍼져서 갖자기 눈물이 남요… 저번주에는 도경수 노래 듣다가 울었어요…
-
ㅇㅇ 와서 확인한다 맞팔은 안해준다
-
국어랑 수학 풀때 들음
-
메가 구독패스 0
다시 팔까요..? 미루다 못삼,..ㅠ
-
지가 듣고 싶은 말 들으려고 몸비트는게 너무 괘씸함 가뜩이나 입시경쟁에서 한번씩...
-
이런거 0->1까진 31
눈풀로 적분 연습해보셈
-
겠냐고 ㅋㅋㅋ
-
현역 질받 17
새벽이니 질문해주세뇨
-
현역이고 생윤 개념은 2회독했고 윤사는 2학년때 내신으로만하고 아직 제대로는...
-
ㄹㅇ?
C1이랑 C2랑 안 같아도 되는 건가요??
네네 다를 수 있습니다.
한 함수 적분할 때 구간마다 적분상수가 다를수도 있는 거니까 그런 거조?
근데 개념이나 해설강의들보면 항상 ln절댓값+C1 하던데 오개념인가요?
"한 함수를 적분할 때 구간마다 적분상수가 다를 수도 있다"라고 생각하시면
좀 위험할 수 있습니다.
기본적으로 피적분 함수가 '연속'일 경우
적분이 된 함수는 자동적으로 미분가능하게 되어
적분 상수가 동일해집니다. (cf. 도함수 연속->원함수 미분 가능성 보장)
이 점을 염두해주시고
'피적분 함수의 정의역이 불연속으로 끊겨 있는 상태에서 (ex. 1/x)
적분할 때 구간에 따라 적분상수가 다를수도 있다.'
이렇게 생각하시는게 좋을 것 같습니다.
말씀해주신 개념/해설강의 같은 경우에는
앞뒤 맥락과 설명하는 상황을 추가적으로 파악해야하기에
확답을 완전하게 드리기는 어려울 것 같습니다.
현우진 선생님 킬링캠프 모의고사 28번에 나온 소재네요ㅎㅎ
저도 고려안하고 틀렸던…
아 그런가요? 킬링캠프에 이 소재가 이미 나왔는 줄은 몰랐네요ㅋㅋㅋ
이거 소재로 한 문제 사설에서 봤어요
그렇군요! 알려주셔서 감사합니다! ㅎㅎ
고등학교 수학에서 불연속함수 적분 안시키지 않나요??
가우스 함수같은 불연속함수 자체를 적분한다는 의미가 아니라,(당연히 고등학교 교육과정에서 불연속함수의 적분은 다루지 않습니다.) 연속함수를 적분할 때 정의역이 끊겨있어 구간별로 적분해야되는 상황(적분 상수가 달라질 수 있음)을 말씀드린 거에요!
예를 들어 점근선이 존재해서 한 지점을 기준으로 정의역이 끊겨있는 상황이라고 합시다. 다만, 그 지점을 제외하고 나머지 부분은 다 연속이고요(1/x의 경우 x=0을 경계로 정의역이 끊겨있음)
이 경우 함수의 구간을 나누어 적분하면(x>0,x<0) 구간별로 적분 상수가 달라질 수 있다라는 의미입니다!
아하! 친절한 설명 감사드립니당><
넵! ㅎㅎ