이거풀어보새요
게시글 주소: https://orbi.kr/00070884019


난 너무 찝찝하게풂.
개인적으로 뭐처럼 보이는거 직관으로 미리 찍어놓고 그게되는이유를 논리 끼워맞춰서 풀어내는거보다
정공법으로 논리적용해서 정방향으로 뚫어버리는걸 좋아하는데
그러질못함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
야호쌩일이다~~ 8
-
한성대 과 질문 2
상상력인재학부가 자유전공이고 It공과대학은 나중에 컴공등 공과대학 전공을 선택하는...
-
인강 질문잇음 0
현강한거 다음날 인강에 올려주잖아 보통 몇시쯤 인강에 올려줌?
-
필요없을까요? 물론 만점임
-
우리 모두 열심히 오르비를 하여 올해의 마지막 일요일을 즐기도록 합시다
-
집들어오자말자 여자신음 소리 들림 ㅅㅂ 방에서 보는건 좋은데 제발 이어폰좀..
-
하루종일 게임하느라
-
뭔 맛임 대체 차라리 중국집에서 볶음밥 시켜서 딸려 오는 짬뽕 국물 드셈
-
중딩 옯붕아 06 위로는 다 삼촌뻘일 텐데... 놀아주느라 고생이 많다 수고해라
-
저는 그래서 현여기들 답맞추는거 음침하게 옆에서 귀열고 들어요
-
나좀쩌는듯
-
강기원 질게 문항공모 테스트용으로 사용 ㄱㄴ한가요? 0
만든 거 조건 줄이거나 단순화 해서, 문항공모 할 때 시뮬레이션 돌려보는 용도로...
-
이거 읽었을때 내가 처음 뇌사온 부분이 금섬의 시신이 발견됐다하는데 왕비는 누구고...
-
ㅇㅈ 10
페메보다가 발견함 대체 무슨 일이 있었던걸까
성관계요?
문제풀어보셈
화질 에바
다시올림요
32 ?
정공법 ㄱㄴ
ㄱㅁ
설명의 편의를 위해 e^(ax²+bx+c)=g(x)라 하겠음
f(x)는 (가)에 의해 (2, 0) 점대칭
(나)에 의해, 2|f'(x)|≤f'(8)-f'(0)
x에 0과 8을 대입하면 f'(0)≤0, f'(8)≥0
부호를 감안해 절댓값을 씌우면
2|f'(x)|≤|f'(0)|+|f'(8)|
따라서 |f'(0)|=|f'(8)|이며 이는 |f'(x)|의 최댓값임
f'(0)은 최솟값, f'(8)=f'(-4)는 최댓값임
g'(x)=(2ax+b)e^(ax²+bx+c)
g''(x)=(4a²x²+4abx+2a+b²)e^(ax²+bx+c)
f'(-4)가 f'(x)의 최댓값이므로
g'(-4)는 g'(x)의 극댓값, g''(-4)=0이며
g''(x)는 x=-4 부근에서 +→-로 부호가 바뀜
f(x)의 x=0에서의 좌미분계수가 g'(0)가 같으며
f'(0)이 존재하므로 f'(0)=g'(0)
따라서 g'(-4)+g'(0)=0
g'(x)는 x=-4에서'만' 최댓값을 갖고, 점대칭함수이므로 g'(-4)+g'(x)=0을 만족하는 x는 하나뿐임
이를 만족하는 x가 0이므로
따라서 g'(x)는 (-2, 0)에서 점대칭, -b/2a=-2
g''(-4)=0과 연립하면 a=-1/8, b=-1/2
f(0)=e^c, f'(0)=-e^c/2
f(2)=0이므로 f'(0)이 f'(x)의 최솟값임에 위배되지 않으면서 f(2)=0이려면 f(x)는 0~2에서 1차함수임
정적분값을 이용해 c를 구하면 c=2
따라서 c/ab=32
사진을 찍을 수 없고 패드나 노트처럼 필기가 용이하지도 않아서 부득이하게 글로 풀어썼음
정성추