회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00070871676
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
꼬우면 돈많게 태어나라 ㅋㅋ
-
어떻게 모든지방 자세한사정까지 다알고 하겠음 객관적인 기준이란게 있을수가있나...
-
물론 사람이 항상 생산적인 일만 해야하는 건 아니긴 해
-
또 전통놀이구나 1
-
돈많다고 공부잘하는게아니라 잘할 사람은 어떻게서든 열심히해서 성적 올리료고 함 이걸...
-
ㅈㄱㄴ
-
개꿀잼이네 학교 푸로구래밍 시간인데 개재밋노
-
본인 사는 곳애서 농어촌 지역으로 다 버리고 이사가서 중고등학교 6년 지내셈 쉽다...
-
청소 너무 싫다
-
세상은 허구한날 수학문제 벅벅 풀고 과탐 숫자퍼즐이나 맞추며 놀고 허구한날...
-
언론 분위기를 보면 2026 의대정원은 3058이라고 곧 발표할거같긴 한데요 6
교육부는 본과 3·4학년생을 중심으로 수업 참여율이 높아지고 있는 것으로 파악하고...
-
학교생활이 개바쁘니까 반수생각이 사라짐 찍먹은 마혀운데
-
음... 1
어떻게해서든 지각이니까 오히려 마음이 편하네 ㅎㅎ
-
지역별로 수준차이가 너무 심하다고요? 네 수시 처방해드리겠습니다~~ 그래도...
-
좋은아침 10
천원아침 흡입하기 오늘은 특식이래요
-
안알랴주면 난 어떡해
-
안녕하세요 현역때 17수능 봤던 틀딱입니다 가고싶은곳이 생겨서 내년까지 바라보고...
-
젖지대머리 2
젖지대머리
-
수학help 5
지금 미적분 이해원 하는중이에요,,수학 어느정도 한다고 스스로 생각하는데 항상...
-
학비땜에 알바 풀로 뛰는거라 했다.. 눈치보이네
-
9시간도 안남음 0
대성의 첫 앨범이 나옵니다
-
서울 강북 동네 내에서 형성된 분위기 자체가 피튀기게 공부하는게 아니라 적당히...
-
4/8 공부목표 0
근월승리 2일차 주간 키스 2일차 김승리 선택 언매 1장 끝내기 브릿지 전국브릿지...
-
모닝 4
-
메가스터디가 뭔지도 모르고 실모는 듣도 못했고 점심으로 우렁쌈밥나오는...
-
휘문평균 1
ㄷㄷㄷ
-
그치만 20년이넘도록 해본적이 없는걸요ㅡㅡ 밉다
-
정부, 오늘 국무회의서 차기 대선일 6월 3일로 확정 11
대선 입후보 희망 공직자 내달 4일까지 물러나야 (서울=연합뉴스) 홍국기 기자 =...
-
수학적 중간x 모든 행위에 중용x 맞죠? 윤사 때 배워서 기억이 잘 안나네요
-
안녕하세요. 이투스 다니는 재수생입니다.. 제가 코 훌쩍이는 소리라던지 목 큼큼하는...
-
어~ 맞죠? 0
네 존나 맞아요~
-
개체 정의 관련된 지문이 출제된 적이 있었구나 사바컴이라니 ㄷㄷ
-
[다시 간다]목동 30분 거리가 농촌?…농어촌 전형 취지 무색 2
[앵커] 교육환경이 열악한 농어촌 학생들의 입시를 돕기 위해 만들어진 농어촌...
-
요새 잠을 잘 못 자서 그런가....다들 건강 챙기셔요
-
농어촌 vs 서울 구도로 보면 안되고 농어촌 vs 지방 구도로 봐야함 5
농어촌은 서울사람에게 역차별이라고도 보지만, 실질적으로 지방사람들에게 더 큰...
-
사설이랑 모고는 여기 싹다 이해하면 문제 다 풀 수 있겠다라는 감이 오는데 수특은...
-
아 1교시 1
ㅋㅋ
-
농어촌 있어야된다고 ㅋㅋ
-
하이데건가? 지문 참 추상적이네
-
최저? 그 정도는 좀 맞춰라
-
얘들아 안녕 대학 1학년에 다니고있는 21살이야 제가 글을 쓰는 이유는 우리 부모님...
-
필의패는 무조건 통과돼야 한다.
-
재수 공대 0
언매 미적 사문 생1 하려고 하는데 연고나 서성한 공대 사문 해도 괜찮겠죠? 국수영...
-
불미스러운 사건으로 중단된 언어학개론을 다시 써볼까 3
형태론 쓰다가 장렬히 당해 버려서 나가리 됐는데
-
정기님은 2로 보면서도 청소년이 서울에 살면서 가질 단점은 간과하신 거 같은데 자기...
-
D-219 0
영어단어 day1(40단어) 수특단어 13강 국어 내신 수특범위 공부,문제 풀기 생윤 1,2 복습
-
암만 봐도 보기 지문이 이해가 안 가서 물어봄 [증가율이 다르다=비례하지 않다] 이...
-
5분만 일찍 일어나면 될일인데 말이죠
-
D-9 할수있다 4
사람살려 해야한다 으아아각
-
1회용 사서 세이프함.. 하 너무힘들어
오 유명인..
오 문제 이쁘다
히히
f(-1)=0, f(0)=-1, f(1)=1인 케이스 맞나요?
네 맞아용
전국서바에ㅜ있을거같은 비쥬얼
벌써 못풀겠다
일단 집합있으면못풀어
학습자료 태그를 까먹었네요
해설지 쓸 때는 엄밀하게 하려고 평균값정리 이용해서 작성했는데, 대충 그래프 몇개 그려보면서 될 거같은 개형 특정하는게 실전적인 출제의도입니당
351 인가요??
!맞아요!!!
혹시 어떻게 푸셨는지 간단한 풀이 공유 가능하신가요??
그낭 그래프 때려맞추기 했어요.. ㅋㅋㅋ 최고차항 계수가 양수니까 뒤의 2차 함수의 도함수값이 -9/8보다 작아야 한다라고 생각하니까 좀 더 빨리 구해지긴 하네요
감사합니다!
간단해설
집합 조건에서 S={-1, 0, 1}이고
집합 {f(-1), f(0), f(1)}은 S의 부분집합입니다
또한, f(f(-1))=-1, f(f(0))=0, f(f(1))=1이 됩니다
이를 바탕으로 가능한 순서쌍 (f(-1), f(0), f(1))을 찾으면
(-1, 0, 1), (0, -1, 1), (1, 0, -1), (-1, 1, 0)의 네 가지를 찾을 수 있어요
근데 x=-3/2에서 -1보다 작은 미분계수가 등장하니까
평균값정리를 사용하거나 그래프를 그리다 보면 가능한 케이스는 두 번째 케이스밖에 없게 됩니다
이후에는 식을 세워서 좀 더럽긴 하지만 계산하면 답이 나옵니다!