회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00070871676
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔텍1보다 확실히 어려운듯 솔텍은 찐으로 어려운 주제에 대해선 별로 어렵게 안 내고...
-
17수능 30번을 기울기로도, 식으로도 다 풀어봤는데 기울기 함수가 도대체 어떤...
-
나형 30번은 7
지금으로 치면 어느정도 난이돈가요?
-
ㄴㅓ무 졸린데 0
오늘만 쉴까... 하 .. 영어 지문 읽다가 꾸버꾸벅 졺...
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
책 읽을 때 바로 전에 읽은 내용이 기억이 안남 남의 말이 머리로 안 들어옴 그래서...
-
아님 햇반도 있겠다 라면?
-
95 ㄷㄷㄷㄷ
-
대성패스 공유 0
대성패스 20에 공유 받으실 분 구합니다 쪽지주세요!
-
소나(素那)[또는 금천(金川)이라 아니 뭔 수특, 수완, 검정 교과서 싹 다...
-
죄송합니다.. 12
죄송합니다.. 제가 할말이 없습니다
-
음료 빼고 든든한 것 중에
-
3달만에 러닝크루 다녀오겠습니다 =)
-
어아아아아아아아아아아아아 왜 제로 치킨 없는거냐고...
-
당했을때 빡치는것 / 본인이 많이 하는것 + 그 이유 얘도 주기적으로 올리는데...
-
오르비 캐스트의 힘은 굉장했다!
-
본인이 주변에서 본 인팁들 어땠는지 사회성이 없다느니 싸가지가 없다느니 맹하다니...
-
[속보] 합참 "북한군 10여명 휴전선 침범, 경고방송·사격에 북상" 1
북한군 10여명이 8일 군사분계선(MDL)을 침범했다가 북상했다고 합동참모본부가...
-
시범 보여줄 여르비 구함...
-
ㅈ됐다 3
학교에 패드 펜 놓고 옴. 근데 이동수업이었음. 정확히 언제 없어졌는 지 모름
-
미적을 너무 못 해서 기하나 확통으러 런치려고 하는데 국영수 상태가 다 좋지 않아서...
-
좆같아~ 오늘 뭐할까~(공부)
-
오늘은꼭공부를하겠단내계획이
-
2025학년도 홍익대 논술 기출(선행학습평가) : 네이버 블로그
-
룸메랑 너무 잘맞아서 서로 공부한다고 해놓고 수다만 ㅈㄴ 떪 그리고 오며가며 보면...
-
국어 나기출 언매 2단원 국정원 비문학 2지문 분석 문학론 강의 1 고전시가 단어...
-
지구 심화커리 0
유자분 솔텍 시즌1 둘중 뭐가 더 쉽나요?
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 많다!
-
얘네 이럴거면 개정 왜했냐
-
내 생각 요하는 활동할 때마다 떠오르는 것고 없고 논설문도 못 쓰겠고 챗지피티만...
-
요약 칼럼이라도 찍어볼까 나중에
-
맞팔구 0
-
100은 뭔가 넘을 수 없는 벽같은데 96은 이사람이 엄청 잘해도 인간계구나 이런느낌
-
Keegan-Michael Key
-
근육통이 생김
-
연세대가 노최저라서 할까하다가 연세대 논술 공부(수리+최저도 공부해야하니)의...
-
달마 오열하겠노 0
단박에 깨달음 ㅇㄷ
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 3
논리싫증주의자는 관심이 없다
-
못생긴듯 0
-
이번만큼은 사랑한다 섹스 ㅋㅋㅋㅋ
-
왜 맞팔했는데 0
1명이 줄어든거지??ㅡㅡ
-
공주 가오떨어져
-
그냥 싫음 화학 자체가 역겨움
-
안녕하세요 0
네
-
뚫리나요???
-
독감인가 1
토요일부터 계속 이러네 열이 내렸다가도 다시 남
-
타과생들 어떻게 생각하시나요
-
아 여기가 아닌가?ㅎ
-
참고로 본인 여잔데 진짜 잘생긴 애보기 어려움
-
사문 윤성훈 한지 이기상 듣고있는데요 아직 개념도 못 끝냈고 마더텅 문제 양도...
오 유명인..
오 문제 이쁘다
히히
f(-1)=0, f(0)=-1, f(1)=1인 케이스 맞나요?
네 맞아용
전국서바에ㅜ있을거같은 비쥬얼
벌써 못풀겠다
일단 집합있으면못풀어
학습자료 태그를 까먹었네요
해설지 쓸 때는 엄밀하게 하려고 평균값정리 이용해서 작성했는데, 대충 그래프 몇개 그려보면서 될 거같은 개형 특정하는게 실전적인 출제의도입니당
351 인가요??
!맞아요!!!
혹시 어떻게 푸셨는지 간단한 풀이 공유 가능하신가요??
그낭 그래프 때려맞추기 했어요.. ㅋㅋㅋ 최고차항 계수가 양수니까 뒤의 2차 함수의 도함수값이 -9/8보다 작아야 한다라고 생각하니까 좀 더 빨리 구해지긴 하네요
감사합니다!
간단해설
집합 조건에서 S={-1, 0, 1}이고
집합 {f(-1), f(0), f(1)}은 S의 부분집합입니다
또한, f(f(-1))=-1, f(f(0))=0, f(f(1))=1이 됩니다
이를 바탕으로 가능한 순서쌍 (f(-1), f(0), f(1))을 찾으면
(-1, 0, 1), (0, -1, 1), (1, 0, -1), (-1, 1, 0)의 네 가지를 찾을 수 있어요
근데 x=-3/2에서 -1보다 작은 미분계수가 등장하니까
평균값정리를 사용하거나 그래프를 그리다 보면 가능한 케이스는 두 번째 케이스밖에 없게 됩니다
이후에는 식을 세워서 좀 더럽긴 하지만 계산하면 답이 나옵니다!