-
t1 jdg전도
-
게이까지는 아닌듯
-
원광대 진학사 7
한의대 치대 왜 추합 안주지.. 최초합 아니면 다 불합임
-
내가 전학을 총 2번갔어..1학년때 국제고다니다가, 지역자사고로 전학갔다가, 2학년...
-
2024에 브랜드뉴 그거만 추가된거 맞지?
-
90명이상 뽑음 40등임
-
ㅋㅋㅋㅋ스피커 이것저것 다 틀어봐도 제 귀엔 맥북 스피커가 개오짐...
-
를 알고 싶다면 고개를 들어 거울을 보라
-
밤새고 차에서 자기
-
안정은 하나만 쓰고 두 개로 모험을 좀 해보려고 생각하는데 가톨리대 자연공학 계열과...
-
설경영경제 3
어느 순간부터 설경영 ---- 진학사컷이 더 낮고 고속이 살짝 더 높네요.....
-
경희대 논술준비반 다 밥먹으러 나가고 교실에 남녀 2명인 상황 -남자: (여자 있는...
-
그 쉬운 시험에서 좋은 점수를 받지 못하면 심정은 똑같은걸요
-
기차지나간당 13
부지런행
-
전년도 경쟁률이런것만 보이고 진학사에 지원한 수는 안보이는디 원래이런가요
-
1학년 1학기 학고->2학기 휴학 후에 반수 실패하면 자진 유급해서 다시 1학년...
-
새벽 2시-3시: 크리스마스 기만자들 척결 메타 새벽 3시-4시: 이미지 메타...
-
ㄱ..그래도..내년엔 제발....
-
언더테일 두과자 4
-
슬프다 1
이건 5다
ㅈ..정답..!
이게 뭐야
와 이걸 맞혀?
발문이 어디서 본거같은데
3월 가형 30번이었나
2018 9평?
f(x) = t√x + x(lnx - 2)
f'(x) = t/(2√x) + lnx - 1
|f(k) - g(k)| = g(k), f(k) = 0 or 2g(k)
lim(x→0+) f(x) = 0 이고 f(x)가
구간 (0, ∞)에서 증가하면서
y = |f(x) - g(x)|가 x = k에서 최소이므로
f(k) = 2g(k), f'(k) = g'(k),
g'(k) ≥ f(k)/k → kf'(k) ≥ f(k)
여기서 k = h(t)이면 kf'(k) = f(k)이므로
t√k/2 + klnk - k = t√k + klnk - 2k,
t²k/4 = k², k = h(t) = t²/4
→ h'(t) = t/2, h'(10) = 5
정확합니다!
저 g'(k)≥f(k)/k 는 어떻게 나온건가유..?
아니 제발 해설 좀 궁금해서 일상생활이 불가능해요....
다른 건 알겠는데 저 부등식이 평균변화율로 관계식 만든 건가요??
그래프 직접 그려보니, x=k에서 최소이려면, f(x)의 x=k에서의 접선이 0,0 을 지나야 하는 게 k의 최소네요...
그래프만 잘 그렸다면 바로 보였을 텐데 아볼 위볼 파악을 잘 해야 했네요...