-
순수하게 분탕을 치기위해 오르비를 들어오는 ms들
-
첨알았당
-
ㅇㅇ
-
엑셀 살까 2
작년 강k 어렵게(?) 구했는데
-
박석준쌤 어떰? 2
3모 해설강의 보니까 문학 풀이방식이 조금 독특한 것 같아서.. 국어 문학을 너무...
-
조용히 들렸다가 가세요
-
공부도 못해 잠도 못 자에휴 씨 발
-
업로드되는 칼럼들은 유튜브 영상으로도 제공되니, 많은 관심과 구독 부탁드립니다!...
-
로스쿨 가야하니까 배려라고 생각하려고 해도 공대는 학점 필요없나? 걍 다 필요한건데...
-
은 뭔가요
-
지금 피램 2일치 유기함...... 아.... 죄송합니다 열심히 살지 않아서.......
-
탈릅한다고 하고 재릅하는자와 밑도 끝도 없이 도덕적이고 착한 페르소나를 연기하는...
-
로스쿨예과느낌 아닌가 실제로 리트 엄청 많이 보지 않음?
-
프사바꿈 5
-
사탐런때문에 공대 못써서 자유전공-전전 테크 타려고 했는데 막상 와보니까 과생활에서...
-
단순히 내가 공부를 못하는데 의대를 노린다던가 하는 것을 떠나서 내가 밑천이 없는데...
-
이거 전국 모든 잇올 다 합친 석차인 건가요 이게 맞다면 더프 본 잇올러만 전국에...
-
난 n제 추천해줄때 16
무조건 설맞이 1순위로 추천해주는데 물론 저거 풀만한 등급대면 ㅇㅇ
-
1. 실수 줄이는 법(부제 : 사람은 항상 같은 실수를 반복한다) 2....
-
아이디어 수강후 기생집 중인데 실전개념이 좀 부족한거같아서 뉴런 들으려고 함 근데...
-
플래너쓰고 좀 거시적인 계획은 잡아야겠어
-
현역 고3인데, 학교에서 엄기은 쌤 수업 듣는 사람이 저밖에 없는 게 너무 아쉬워서...
-
걍 바꾸지 말까
-
음음
-
갑자기 언어능력 포텐터져서 문학 100% 수렴에 독서도 10분 남기고 2틀 정도가 되는거임
-
수일만 대충 어떤내용인지 궁금합니다
-
대통령, 국회의원, 광역 자치 단체장, 광역 의회 비례 대표 의원, 교육감에 대한...
-
푸 리 나
-
금방 마감되나요? 9시에 방문접수 10명 받던데 9시에 가면 줄 쫙 서있으려나 강남권은아님
-
올해도 가면 이새끼 뭐지 싶겠지.... 근처 학원가야하나
-
아 과제하기싫다 4
교양 필수 채우겠다고 아무거나 잡지 마십쇼...
-
낄 자리가 없음
-
10년 넘게 참아왔는데 군대 다녀오고 나서도 똑같이 이러고 있으면 나는 어떻게 해야 하는거야,,,
-
국어 1-2 수학 4-5 영어 3 사탐 1-2 입니다. 염치없지만 연대 목표 로...
-
팔이 너무 저려 4
으아ㅏㄱ 우
-
이미지 T 세젤쉬+미친기분후-----> 한석원T알텍으로 넘어가도 되나요?? 1
계속 이미지t 갈지 한석원t로 갈지 고민입니다..ㅠㅠ
-
귀칼보다 이게 더 재밌네
-
3화까지 봤는데 나름 잔잔해서 볼맛은 나는데 스토리 진행이 안되서 이거 후반가도 재밌음?
-
잘자라 2
나도 잔다
-
갑자기 Botzi더락이 보고싶어지네요
-
저격합니다 10
사람 프사보고 x알이 뭐에요 x알이
-
현정훈 현강 1
남여 비율 어느정도임?
-
가슴이 웅장해지네요
-
역학 기출 2번 돌렸는데 3모 때 하나도 안풀리고 머리가 멍해짐.... 그래서 지구를 하기로 함
-
해명합니다. 6
미용실 갈 때마다 머리숱 많다는 소리 듣습니다.
-
ㅇㅇ https://orbi.kr/00072620922
-
나 논술안해봄
-
학고반수 하려는데 지금 계속 학교 안가는중인데 집으로 언제 우편 오나요 1학기가 끝나고 거는건가요?
어려운거 맞아요
대체 이게 왜 여기서 나오는 걸까요...
지금은 넘어가도 괜찮을까요?
이거 상쇄 그건가
이거 어려운데
내다버린 1시간...
짱중요한?
오 아시네요
주변 애들 중에 아는 애들 없던데
이해하려 노력하고자 한다면 글로나마 최대한 상세하게 해설할 의향은 있음
최대한 이해하려 해보겠습니다...!
전 글이 이거 관련된 거였는데, 거기서는 답을 못 얻어서요 ㅠㅠ
다만, 수준이 이걸 이해할 수 있을지는 모르겠습니다
미적 아예 안 나갔고 수2 쎈 끝낸 후 처음하는 기출이라서요
현우진도 해설오류낸 문제
ㄱㄴㄷ 문제라 그런것도 있지만 객관식 정답률 10퍼대 문제임 객관식중에는 손에꼽는수준
231114 어려운거마즘
g(x)는 x의 범위에 따라 식이 변하고, 그렇기에 h(x)도 x의 범위에 따라 식이 변함. x=-3, -1, 1 부근에서 식이 변하니 ~-3, -3~-1, -1~1, 1~ 이렇게 4개 구간으로 쪼개서 생각하면 될 텐데, 문제는 경계를 어디에 포함시켜야 하는지가 판단이 어려움. 경계를 어디에 포함시킬지를 고민하고, ㄴ, ㄷ을 고민하는 과정에서 x에 극한을 적용해야 하는데, x도 극한이고 t도 극한이라 극한이 더블임. 어떻게 해야 할까?
(t->0+)lim g(x+t)에서, t에 극한이 적용될 때 x는 상수와 다를 바 없음. 그렇기에 x+t=m과 같이 치환해 (t->0+)lim g(x+t)=(m->x+)lim g(m)로 볼 수 있음. 같은 논리로 h(x)=(m->x+)lim g(m) × lim g(m+2)로 볼 수 있음.
이제 h(x)의 범위를 엄밀하게 나누어보자. g(x)가 x≠-1, 1에서 연속이기에, x≠-1, 1에서 (m->x)lim g(m)=g(x)임. 따라서 -3, -1, 1일 때 h(x)=g(x)×g(x+2)임. x=-3, -1, 1일 때는 그냥 대입해서 판정하면 되니까, h(x)를 정확하게 작성할 수 있고, 이걸 기반으로 ㄱㄴㄷ를 풀면 됨
축제 준비 때문에 어제 핸드폰 수거 전까지 시간이 없다 이제야 시간이 났습니다...!
따라서 -3, -1, 1일 때 h(x)=g(x)×g(x+2)임.
여기 파트가 이해가 안 되네요
-1과 1에서는 g(x)가 불연속일 수 있는데 왜 이렇게 되나요??
엄 제가 잘못 씀
x≠-3, -1, 1일 때인데 아예 반대로 써버림
저 문제가 23수능에서 제일 어려운 문제였다고 개인적으로 생각합니다.