수학 도움)좌극한 우극한 같이 나오면 어케하나요
게시글 주소: https://orbi.kr/00070699726
실수 전체에서 연속이라는 것을 구하려면
lim x->-1- h(x)
h(1)
im x->-1+ h(x)
뭐 이런 게 같은지 구해야 하는 거 아닌가요? (리밋 표기를 저렇게 해도 되는지 몰겄네요)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
읔ㅠ 나도 리밋알파
-
자매품으로 기균메타도 있음
-
거 화력 되게 오래가네
-
수도권쪽은 아직 시작도 안했나요
-
그냥 농어촌에 대한 건설적인 토론 하면 좋을거 같은데 3
그냥 n수생이라 배배 꼬여서 이해당사자 아니라고 감정배설하며 저주 퍼붙는거 같은...
-
기초개념,기출학습 완료했는데,실전개념 강의를 지금부터 모두 듣긴 부담스러워서 한완수...
-
https://youtube.com/shorts/KnK18jxz0G0?si=IVDVs...
-
섹스 6
잘 잤니
-
지금 김동욱 일클 끝내고 취클 들어가야하는데 일클에서 연필통 풀면서 문제 난도가 좀...
-
이 병신은 뭐노 4
촌놈들 봉기운동 ㅋㅋㅋㅋㅋㅋㅋ 진짜 생각하는 꼬라지 부모 머리끄댕이끌고 와서 연소득...
-
쎈 문제도 못푸는 애들이 수두룩한데 대치동 현강에서는 22번 30번급을 한 강의에...
-
6월 4일 맞는거 같음 속보까지 나온거면
-
3일 대선 4일 모고
-
소득분위별 대학 가산점(Max 설대식 5점) 하면 좋겠다
-
왤캐졸려 8
봄이라 그런가 ㅅㅂ
-
항상 하나씩 틀리는데 들어야할까요? 하루 수업에 13만원(라이브)태우는건 좀 아까운...
-
진짜로 감동적이긴 할듯요누가 가르쳤는데 ㅠㅠ눈물이 스르륵 스르륵 ㅠㅠ
-
러셀은 실제 시험장과 너무 다르다
-
선거 때문에 6평 날짜 바뀌면은 6월 3일 이전임? 후임? 2
어떻게 바뀌지
-
생각난 김에 0
공생발생설 지문 다시 기출분석하고 해설 찾다가 재밌는 칼럼 찾음...
-
220628 3
-
ㅋㅋㅋㅋㅋㅋ
-
논술 도전해볼까... 10
논술 문외한이어서 진짜 ㅈㅅ 수리논술 생각중인데 최저 높은거로 하면 애들 많이...
-
대선방송 보지 말라는거임?
-
진짜냐구우우웃;;
-
https://m.ytn.co.kr/news_view.php?key=202504081...
-
ㅈㄱㄴ
-
3모4떳고 지금 새기분 듣는데 등교하는 날은 강의 듣기 버거워서 강기분 독서에서...
-
저 아이린 닮고 싶어서 맨날 내가 아이린이라고 상상하니까 아이린보다 이뻐진듯ㅋ
-
백날천날 오르비 거주중인 N수 반수생들 떡밥을 학교에 있는 현역이 어떻게 따라감?...
-
여름 아닌가
-
다른 분들 의견도 궁금해서 써봅니다 교육부는 본과 3·4학년생을 중심으로 수업...
-
꼬우면 돈많게 태어나라 ㅋㅋ
-
어떻게 모든지방 자세한사정까지 다알고 하겠음 객관적인 기준이란게 있을수가있나...
-
물론 사람이 항상 생산적인 일만 해야하는 건 아니긴 해
-
또 전통놀이구나 1
-
돈많다고 공부잘하는게아니라 잘할 사람은 어떻게서든 열심히해서 성적 올리료고 함 이걸...
-
개꿀잼이네 학교 푸로구래밍 시간인데 개재밋노
-
본인 사는 곳애서 농어촌 지역으로 다 버리고 이사가서 중고등학교 6년 지내셈 쉽다...
-
청소 너무 싫다
-
세상은 허구한날 수학문제 벅벅 풀고 과탐 숫자퍼즐이나 맞추며 놀고 허구한날...
-
언론 분위기를 보면 2026 의대정원은 3058이라고 곧 발표할거같긴 한데요 8
교육부는 본과 3·4학년생을 중심으로 수업 참여율이 높아지고 있는 것으로 파악하고...
-
학교생활이 개바쁘니까 반수생각이 사라짐 찍먹은 마혀운데
-
음... 1
어떻게해서든 지각이니까 오히려 마음이 편하네 ㅎㅎ
-
지역별로 수준차이가 너무 심하다고요? 네 수시 처방해드리겠습니다~~ 그래도...
-
좋은아침 10
천원아침 흡입하기 오늘은 특식이래요
-
안알랴주면 난 어떡해
-
안녕하세요 현역때 17수능 봤던 틀딱입니다 가고싶은곳이 생겨서 내년까지 바라보고...
-
젖지대머리 2
젖지대머리
밖에있는 극한만 보몀됨요
lim x->-1- (lim t->0+ g(x+t)) 뭐 이렇게 된다면 lim x->-1- g(x) 일케 보면 되나요?
넵넵 원래 정석은 g(x+0+) 그래프 그리고 거기다 극한 취하는 건데 차피 댓 쓰신대로 보는거랑 똑같아요
혹시 왜 그런지 알 수 있을까요...? 우극한이 왜 없어지는지 모르겠네요
안쪽 극한이 좌극한이든 우극한이든, 어차피 불연속인 점에서의 값만 달라지기 때문이에여 한번 정석대로 풀어보세요
정석을 모르겠어요
/·/같은 그래프에다가
이런 그라프 맞을까요?
Lim t→0+ g(x+t) 그래프를 그려서 거기다가 lim x→-1-를 취해보셔요
Lim t→0+ g(x+t) 이걸 어케 그릴지도 모르겠고,
/·/같은 그래프에다가 그리리는 것도 모르겠네요...
극한상쇄요
농담입니다
g(x+t)에 t->0+라면 이건 g(m)에 m->x+와 같다고 볼 수 있겠죠 이리 보면 편함요
잘 모르겠슴다...
답변이 5단계까지만 가능해서 여기다 달게요 네 그런 그래프 말하는거 맞아요(물론 문제의 그래프가 저런 그래프라는건 아니고, 그냥 이중 극한의 상황을 이해하기 좋은 예시란 거에요)
지금 패드가 없어서 시각자료로 설명 드리기가 힘드네요 ㅠㅠ 저거 2023년 수능 14번이니까 정병호t 같은 강사분의 해강 보시면 좋을듯해요
넵! 나중에 볼 수 있을때 바로 봐볼게요!