이거 맞추면 수학 좀 치는 거임(3000덕)
게시글 주소: https://orbi.kr/00070250117
실수 전체의 집합에서 정의된 다항 함수 f(x)에 대하여
f(x)는 역함수 g(x)가 존재할 때,
f(x)+1-g(x-1)=0
의 실근을 구하는 방법(아이디어)을 간단히 서술하시오.
(단, f(f(a)+1)+1=a 를 만족하는 실수 a가 존재하지 않는다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
순대6천원 7
맛있음 근데 3시간 뒤에 먹어서 퍼드러짐
-
올해 수능 물2 만점 백분위 몇 예상하세요? 물론 나와봐야 알겠지만요.
-
ㅎㅇ 2
ㅂㅇ
-
예전에 만든 문제들 모아서 모의고사나 하나 올릴까요? 11
수1, 수2, 확통, 미적, 기하 전과목으로 한회분은 만들 수 있을텐데... 근데...
-
밥먹으러나가야징 6
저메추!
-
벽에 끼엇음 1
뒤에 누가 잇는거같음
-
트랄라랄라 트랄루루 이거랑 애쉬톤 홀의 모닝루틴 이거 둘밖에 안 뜸
-
어디가 취업 더잘해요?
-
어떻게 푸나요 ㅜㅜ
-
수학노베질문 0
수 1 수 2에서 어렵다하는 유형 (함수와 그래프, 삼각함수 등등) 일단 푸는...
-
필노 입갤 0
4회독 on 한국어 뭉개는건 챗평ㅋㅋ 김범준 스블 필기노트
-
기하랑 생2 하려하는데 새로 공부한다는 것에대한 부담감과 해야할 게 많아서 오는...
-
의사 별거없긴함 7
제 ㅇㅈ을 보시면 아시겠지만
-
벚꽃이 그렇게도 예쁘디 바보들아
-
서술 범주 파악은 강평ㅋㅋㅋㅋ 이 답글 꼭 달림
-
벽느껴졋음 0
정벽임
-
해석 보는데 머리 깨져서 여기다 부탁드려봅니다 ㅜㅜㅜ 해설도 혹시나 해서 참조해요
-
근데 버스에 사람 왤케 없지 다들 차 타고 놀러갔나요
-
국어를 못하면 수능날 자체를 망치며 영어를 못하면 미친듯이 찝찝하고 사탐을 망치면...
-
학점 던질까 0
학점 자리 한 번 남겨줘? 할려면 할 거 같은데 하자니 귀찮은데
-
수학컷 신기한거 2
어려우면 생각보다 많이 안떨어지고 쉬우면 생각보다 컷이 안높음 저만 그렇게...
-
문학이랑 스키마 구조도 없는 게 조금 아쉽네요 물론 해설은 최곱니다
-
고3 내신인 수학 과목이 2개인데 하나는 등급 안나오는 기하---> 이건 ㅇㅋ 다른...
-
혼자서 생각해 본 수능 수학 확통/미적 표점차(틀린 거 있으면 댓글 부탁) 0
확통과 미적의 표준점수 차이는 Team 미적과 Team 확통의 공통표준편차와 선택...
-
장난하나... 가망 없으면 못 하겠다고 해야지 ㅅㅂ..
-
개씨발
-
가능충 0
작수 미적 3컷인데 올해 확통 백분위 98 가능?
-
진학할까 고민중
-
소개팅 1
사람 북적북적한 서울 지하철 입구에서 만나 카페가서 대화좀 하고 피방에서 배그좀...
-
수시는 1학년 때 버리고 정시만 바라보고 달리다가 국어가 점점 내려가서 지금은...
-
근데 기하얘기가 주제일때만임
-
오 6
오
-
거의 풀엇가 9
아닌가
-
왜이렇게 4
외롭지 갑자기 주변이 다커플이니까 쓸쓸하다
-
지문 1개씩 있는건 속도랑 정답률이 장난아닌데 권고 시간보다 2-3분씩 단축되고...
-
이 출처 하나찾아주시는 분 마다 스벅 기프티콘 하나씩 보내요 ㅠㅠ 제발 찾아주세요 ㅠㅠ !!!!
-
수학 실모 0
강K가 서바보다 난이도 높나요? 강K 풀어보고싶은데
-
아 국어못하는데
-
대 기 은 0
기출분석 고트
-
잠깐 카공하는데 4
옆엔 경희대? 3대3 과팅함 아 나도 낄래요
-
엄
-
잇올 머야 0
전국 시대컨 수요조사 왔네 다같이 시험치면 좋겟다
-
고양이 8
-
대머리만 외쳐도 독포주던 그젖지 어디갔어요
-
국어 유기 중 4
사실 사탐 공부가 곧 국어 공부 아닐까?
-
붐비는 시간 대가 있을까요? 저 때에 비해서 글이 리젠되는 속도가 많이 죽은 것 같네요
-
정의란 무엇인가... 정의의 상대성...
-
아 진짜
-
트럼프의 무차별 관세폭탄으로 버크셔도 이틀새에 마15퍼 떨어졌을 정도로 개박살난...
Gpt딸깍해도되나요
실제 본인이 고등학교 교육과정으로 계산 가능하셔야 합니다.
걍 y=x 교점
조금 더 자세하게!
아랫분이 쓰심뇨

y=x 를 이용하는 건 맞는데, 근거가 틀렸어요!f(x)+1 = g(x-1)
g는 x축으로 1이동, f는 y축으로 1이동

f(x)+1 과 g(x-1)은 역함수 관계이므로, f(x)+1=x 를 푼다 였습니다음 g(x-1)+1 이 g(x)를 x축으로 +1, y축으로 +1 이동한 거고
f(x)와 g(x)의 교점은 y=x 위에서만 존재하니까

근거가 살짝 아까움요!f(x)=g(x)를 만족하는 근에 대해서 f를 y축 방향 +a만큼 이동시키면 g는 x축 +a 만큼 이동하게 되는 것 아닌가요. 결론적으로 임의의 근이 y=x위에 있으니까 새로운 근도 그 위에 있지않나요

f(x)+1 과 g(x-1)은 역함수 관계이므로, f(x)+1=x 를 푼다 였습니다.