-
내첫글은 2
물리 질문글이었는데 고인물들이 막 몰려와서 알려주고감
-
한 명은 유튜버고 나머지는 다들 알거 같고 선배도 금테있고 참 인생 ㅈ됐노!
-
연재희 Evolved slave ll 절대현주해 강풀화1 힘들어하지마
-
왔을때부터 젖지대머리라고 씨부리진 않았구나
-
고고고고고
-
이상한 질문글이였음 호구지 호구
-
오호 0
지구과학 꽤 재밌네 근데 2단원은 너무 노잼인데
-
근본.
-
대학 다니다 1주일만에 그만두고 강대 위업 들어갔다가 2일만에 그만두고 양지메가...
-
옯바 2
오늘은 정말 일찍 자야해요 내일 새벽 4시에 일어나야해서 흑흑
-
암산? 계산력?은 전보다 훨 좋아진거 같음..
-
맞팔구 10
-
'오르비'라는 커뮤가 부끄러운건가요? 지금까지의 활동이 부끄러운 건가요?
-
몰라 안세봄 일단 무한대발산쌉가능같음
-
이거 아시는 분 있으려나
-
진짜 ㄹㅇ 젖지프사보고 저건 뭐하는사람이지 프사 뭣같이 생겼네하고 오르비 들어왔는데...
-
나 알고있으면 오르비 한다는건데 ㅋㅋ
-
다음 그림과 같이 질량 2kg인 물체 A는 3m/s의 속력으로, 질량 1kg인 물체...
-
졸라슬프네 1
난 전썸녀도 없고 현썸녀도 없고 전여친도 없고 현여친도 없고 ㅅㅂ 인생 헛살았노…
-
이건 쉬운듯 보이지만 막상 답답하네
-
작년에 단과학원같은거 없이 잇올에서 하루종일 생재수 했는데 현역때랑 비슷한 점수...
-
황제 화반 포부 스터딘 홍다희
-
현실은 인터넷과 다름
-
댓글로 ㄱㄱ
-
이걸 가 말아 잇올에 이미 신청을 해두긴 함
-
내 오르비 첫 글 13
기억이 새록새록하다 벌써 옛날 일 같네....
-
요즘들어서 더 심해지는 것 같음
-
아침 오르비 정독하면서 등교 점심 학교에서 아이패드로 가재맨,랄로,도파 시청 저녁...
-
특정당한 썰 5
실수로 쪽지에 전화번호 적어보내서 한 명에게 특정당하고 학교옥상 ㅇㅈ했다가 다른 한...
-
뭔가 자기가 그것도 못해주는 아빠인가라는 생각이 드는가봄 전에 pdf 얘기했더니...
-
마음 쓸 일도 없고 좋아요
-
하고 기침했어 카약카약카약카약
-
질문받아봄 10
아무거나 물어보세요
-
호에에에
-
수학 실력이 늘면 늘수록 점점 생각이 확고해짐 특히 작년에 현우진 듣다가 올해는...
-
이명학 신택스 0
이거 왤케 듣기가 힘드냐 갈아탈까
-
기습 선넘질받 9
욕박아도 괜찮음 ㅇㅇ 근데 상처는 좀 받을거긴함
-
kbs 들을건데 이거 살까요? 괜찮아보임?
-
격자점 로그 실생활 이런거
-
질문받음 10
ㅇㅇ
-
https://youtube.com/@head_master_062?si=tdqeZsr...
-
쿄오비쥬오이쟝
-
지금까지 독서랑 문학 인강 한 번도 안 들어봐서 이번에 한 번 들어보려고 하는데...
-
전 고닉 중에 두명 비고닉 중에 한명 있는데 일단
-
우리안경찐따존못오르비언들은 여기가 현생인데
-
ㅠㅠ
-
솔직히 재미있음 물리에 관심도 많고 근데 성적이 안나와 나 믈리 잘해 근데 그게...
-
언매 규칙 활용 5
손을 잡다 할때 잡다가 왜 규칙이 되는건지 설명해주실분

전 삼각함수요삼각함수 좋아요
노베킬러고트
저런 힘내세요
도형까진 할만한데
사인 코사인 그래프 지멋대로 움직여놓고 교점 찾는 문제가 참....
아 이거 저만 이런거 아니였네요 삼각방정식 그냥 패고시픔

풀 때마다 열받네요이번엔 여기서 딱히 걸릴 만한 문제가 안 나왔으니 다행이지
수열의귀납적정의
크악노가다시러
수열 자체도 극혐인데 그 안에 더 싫은게 귀납수열 크아악
삼각함수 도형이요.. 안보이면 그 시험은 조진거고
보이면 그 시험 잘본거인 수준으로 버거움
도형은 의외로 행동강령 정리하면 잘보임
나중에 칼럼이나 써볼까
2등급따리가 칼럼써도되나
전 수열이 제일 재밌던데 ㅠㅠ
기하로 극복하시는건 어떰
악마;
솔직하게 확통 경우의 수가 킬러로 나오면 개빡일듯 ㅋㅋㅋㅋ 28 수능이 매우 기대되는 부분
내신때 확통하다가 토하는줄
28수능 이후라고 해도 경우의 수가 킬러로 나올 가능성은 거의 없다 생각해요
걍 지금 수능에서 선택과목 확통 고른 거랑 거의 같은 범위인데 그대로 수1수2로 변별할 듯
역사적으로 경우의 수, 순열, 조합이 수능 범위가 아니었던 때가 더 드문데 킬러급으로 나온 건 거의 없었죠...
지금 미적분 표본까지 변별해야하는데 수1수2만으로 한다고?
상황이 좀 다르죠
그냥 옛날 B형시절처럼 1컷 96~92 정도로 지금보다 1컷이 높은 수준으로 낼 가능성이 훨씬 높죠
옛날 가형/B형이 표본수준이 낮았던 것도 아니고, 수1/수2가 어려운 문제 못 내는 파트도 아니고 (사설들 보면 미적분 쉬운 회차도 1컷 77 찍고 있는 거 예사잖아요)
옛날에는 미기가 필수여서 굳이 확통으로 변별안한거 아닌가요 수1/수2를 지금보다 고이게 내면 그냥 노마더인데 ㅋㄱㅋㅋ..그렇다고 28체제에서 컷을 높이면 변별이 안되고
수2는 솔직히 이미 한계치까지 간 거 같긴 한데 ㅋㅋㅋ 수1은 아직 무궁무진하다 봅니다
확통, 그 중에서도 조합론 파트는 평가원이 일부러 선을 넘지 않는 거라고 생각해서요.. 예전 스티커 문제 때도 '사과'한 적도 있다 들었고
뭐 이론적으로야 KMO 조합론 문제 그대로 갖다 박아놔도 교육과정 부합하잖아요
가나형 킬러몰빵 시절 나형에서
그냥 확통 킬러 내는 게 아마 교수급 출제자 입장에서 더 편할텐데
그런 거 냅두고 170930(나) 같은 이상한 노가다 문제를 내는 걸 택한 이유는 있다 생각해요
어디까지나 개인 의견임을 전제하자면
올해 6평 확통 28번, 30번, 23학년도 확통 30번이나
17~21 확통 중에서 가장 어려웠던 문제들 정도가 난도 맥시멈이 아닐까 싶어요
그리고 위에도 말했지만 저는 전공통 체제로 가면 옛날처럼 1컷 96, 92 정도를 목표로 출제할 가능성이 훨씬 높다 생각해요
지금처럼 1컷 84 전후가 일반적이게 된 것 자체가 선택체제 도입 후이고,
22예비시행 문제를 보면 이는 선택체제 도입 후의 입시 변화를 고려한 의도적인 변화라고 생각해서요
미분기하 ㄷㄷ
선 안넘고도 충분히 어렵게 할 수 있는 영역이라 ㅋㄱㅋㅋㅋ..적어도 확실한건 지금까지 확통시험지 중에서는 제일 어려울 것 같습니다
그리고 이 짓을 다시 하진 않을 거 같긴 하지만
수1 범위에서는 유서가 깊은 끝판왕 변별문제를 낼 수 있죠
"격자점"
대학수학능력시험 수학 영역의 모든 응시자가 대수, 미적분I, 확률과통계 (2015 개정 교육과정 기준 수학1, 수학2, 확률과통계) 범위 내에서 문항을 해결하고 변별되어 원활한 대학 입시가 이루어지도록 하려면 확률과통계에서 난이도가 매우 높은 경우의 수 문항을 출제하는 것이 불가피하지 않을까 생각했는데, 그동안의 기출문제에 근거를 두고 다르게 예상하시는군요
미적분I의 경우 이미 다양한 사고 방식이 다루어졌다는 데 동의합니다. 대수에서는 고2 전국연합학력평가 시험지에서 확인할 수 있는, 그러나 아직 수능에서는 본격적으로 다루어지지 않은 사고 과정과 상황을 출제하면 28, 29, 30수능 정도에서는 충분한 변별력을 확보할 수 있지 않을까 조심스레 생각해 봅니다.
개인적으로 2022 개정 교육과정에 기반한 새 수능의 핵심은 '융합'에 있을 것이라고 생각합니다. 조건 A, B, C를 만족시키는 모든 삼차함수 중 한 가지를 골랐을 때 그것이 조건 D까지 만족시킬 확률을 구하라는 문제나, 구체적인 수치를 묻지 않고 선지 판단을 시키던 2015 개정 교육과정 물리학I처럼 정확한 접점의 x좌표를 구하도록 하지 않되 지수함수와 로그함수 같은 초월함수의 접선의 방정식을 슬쩍 다루게 한다거나...
25수능을 향해오며 점점 공통수학1, 공통수학2 (2015 개정 교육과정 수학(상), 수학(하)) 의 비중이 커져왔다고 느끼는데, 이 흐름을 따라간다면 두 2x2 행렬의 성분으로 서로 다른 여덟 개의 함수를 제시하고 두 행렬을 곱해 얻어진 행렬과 네 실수를 성분으로 하는 2x2 행렬이 같다는 조건을 주어 연립방정식의 해를 구하도록 하는 문항도 새 시험지에서 확인해 볼 수 있지 않을까, 물론 행렬식도 배우지 않고 가우스 소거법도 배우지 않기 때문에 이러한 방향으로 문항이 출제된다면 교육과정 선밟기를 첨예하게 해야할 것 같긴 합니다만
행렬을 굳이 고1수학에 넣고, 역행렬조차 가르치지 않는 이유는 행렬 재추가가 입시 부담에 영향을 주지 않게 하기 위해서입니다. 따라서 새 수능에 행렬으로, 그것도 선형대수와 줄타기를 하는 수준으로 어려운 문제가 나오는 것은 불가능하다고 생각합니다.
마찬가지로 다항함수의 미적분과 확률을 섞는 건... 누가 봐도 선을 넘는 출제행태라 불가능하다고 봅니다. 내신에서도 그런 짓은 웬만하면 안 해요. 설사 단발성으로 한 번 정도 출제되더라도 지속적일 수는 없을 거라 생각해요. X걱세 같은 데서도 가만 있지 않을 테고요.
무등비 삼도극
그거 아직도 나오나요
교과 내용이긴 하죠
모든 ~의 합
여러 개 구하기 싫은데

아 22번 ptsd지로삼 미만 잡
09교과 시절 미2안하면 저 내용 첨 접해도 어려움
전 미적분.. 계속 틀리네요
특히 적분
제일 첫인상 흉악했던건 지로삼이요!
현대대수요
헉
가환환을 탁
가환환이 commutative ring인가
마자용
진짜 수학 한글 번역 기괴한 거 같음
옹골집합 못참는데..
옹골집합 이러는 거 보니까 너무 쓸데없이 김김계 본 수학과 같네
수리 복전하세요?
미적 전부요
수열 지로 접선계산
기트남어 수1 미적 도형은 개재밌음
공간도형
적분
수열
자연수의 덧셈과 뺄셈
이 모든 고통의 시발점
수학은 다 재밌는듯. 다만 문제가 어려울뿐...
치환적분 부분적분 너무싫음 계산실수 무조건 터져서 .. 계산 길어지면 뇌절
중적분
지수로그함수 그래프
이게 맛있는건데잉;;;;;;;;;!!!
정적분으로 정의된 함수/지수로그 쌩계산/공간도형
수열 극혐
ㅇㅈ
수열 못이김
수열