수학잘하시는분 저 좀 도와주세요ㅠ제발
게시글 주소: https://orbi.kr/00070202161
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데
수학적 오류가 있을지 너무 걱정돼요...ㅠㅜ
진짜 조금씩만 보시고 충고해주셔도 너무 감사하니까
제발 저 좀 도와주세요...
미적분학은 무한을 사용해 유한을 연구하고, 무제한을 사용해 제한된 것을 연구하고, 직선을 사용해 곡선을 연구한다."라는 문장이 가장 인상깊다. 이 한문장으로 심오하고 단 한 가지 개념을 이해하기 위해서도 방대한 배경지식을 필요로 하는 미적분을 함축할 수 있다는 점에서 그러하다. (거의 선에 가까운)무한한 직사각형들을 통해 평면의 넓이를 구하고 그 넓이들을 통해 입체적인 부피를 구할 수 있게 하는 것과 직선을 통해 곡선을 이해한 대표적 예인 원으로 각각 내접하고 외접하는 정육각형, 정십이각형, 정이십사각형, ... 무한에 가까이 가면 곡선의 형태를 띠게 되는 것을 볼 수 있다.(아르키메데스가 원주율을 구한 방법인 조임법을 기반으로 무한의 원리가 곡선을 이해가능하게 해준다. 아르키메데스는 또 다른 곡선인 포물선의 활꼴의 넓이도 무한히 많은 삼각형 조각으로 이루어져 있다고 재해석하여 구해냈다.)
제논의 양분의 역설, 아킬레스와 거북 역설, 화살의 역설을 미적분학을 이용해 풀이할 수 있다. 예를 들어 초속 1미터로 달리는 거북이 아킬레스보다 10미터 앞에서 출발하지만, 아킬레스가 거북보다 10배 빠르다면 아킬레스는 거북의 출발지점까지 가는 데에 1초 걸린다. 그동안 거북은 1미터를 이동할 것이고 그 차이만큼 가는 데에 아킬레스는 다시 0.1초가 걸리고 이것이 반복되면 무한급수로 1.111...초인 10/9초가 된다는 것을 알 수 있다. 제논은 시간과 공간이 연속적으로 존재한다는 사실 즉, 시공간을 끝없이 계속 쪼갤 수 있다는 것을 역설의 모순을 통한 증명으로 귀류법을 통해 반박한다. 그러나 위에 예로 반박했듯이 따라잡는 간격이 무한히 줄어들어 무한한 시간이 걸린다는 제논의 주장은 줄어드는 거리가 유한한 거리로 수렴하는 까닭에 거짓이 된다. 이로써 우리는 무한에 대해 한층 더 알 수 있다.
무한은 모든 양수보다 작지만 0보다 큰, 한없이 무한대로 작은 수인 무한소의 형태로도 존재한다. 만약 기존의 엑스라는 양이 아주 약간 변해 엑스 더하기 델타엑스가 되었다고 가정하자. 이 경우 입력에 일어난 작은 변화 델타엑스가 작은 변화 델타와이를 이끌어낸다. 그리고 작은 변화 델타엑스가 무한히 작아지면 가장 큰 몫을 제외하고 정답에 기여하는 나머지 몫을 모두 무시하는 사고방식을 적용할 수 있다. 이때의 델타엑스는 디엑스로 변하며 무한소를 디엑스처럼 사용하는 이 방법은 극한을 사용해 바꿔 기술할 수 있다. 그리고 이때의 무한소를 미분소라고 가리키는 것이다. 이 개념을 적용하면 엑스와이 평면 위에 있는 어떠한 곡선 그래프의 기울기는 와이의 도함수이며 델타엑스가 0에 접근할 때 델타와이/델타엑스(분자:델타와이,분모:델타엑스)의 극한값으로 정의된다. 여기에 미분소를 사용하면 디와이/디엑스로 표현된다. 그렇다면 우린 특정곡선 와이는 엑스세제곱의 기울기는 (변화를 나타낼 만한 디엑스 항을 제외한 다른 디엑스제곱, 디엑스세제곱 항은 버리는 식으로 계산하여) 삼엑스제곱임을 구할 수 있다.
(라이프니츠)
(라이프니츠에 가능하다면 적분 내용도 쓰고 싶었는데 짧게 같이 넣을 방법은 없을까요....??)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영상 보기 귀찮은데 알려주실 심심한 사람 있나요
-
통통이도 할수 있습니다
-
8시간인데 도저히 10시간은 못 채우겠음 ㅠㅠㅜ 하루좡일하는 거 같은데도 할 게 너무 많다……
-
4덮 언제임 6
찾기 귀차늠 알려주셈
-
열심히 활동을 안한거랑 나를 아는 오르비언들이 죄다 탈릅 조져서 그런가…? 뭐 얇고...
-
댓글 달아주세요 20
-
말안됨 진짜 설/문디컬 나오는거 아닙니까
-
왜냐고? 그야... 커뮤가 처음이였거든.. 너무나도 무서웠어 다 까더라고 그때가 11월 30일..
-
(2000덕) 어떤 분의 자작문제를 수정해드렸습니다 5
원본) https://orbi.kr/00072763458 첫 풀이과정 명시 정답자...
-
십만덕이면 뭐 못사요? 14
나도사고싶어
-
화학을 해야하는 이유 11
-
이것이 바로 얇고 긴 옯생의 비극
-
동선이 개꼬이네 몰라! 일단 가!!
-
아침에 일어나서 한다는 나쁜생각하기 싫은데
-
오래전에 헤어진 친구와 다시 만나는 그 감정이 느껴졌음 목표대학도 같아서 나중에...
-
생1이 탐구 17개 과목중에 3등급 맞기 제일 쉬움 그 이상은 근데 존나 어려움...
-
메타에안끼기 8
그것이 얇고 긴 메모장 옯생을 즐기는 법
-
무지성 화생 지방사는 사람들 잘 알걸? 무지성 화생 하는 (주로) 여학생...
-
날 그리워할 사람이 잇을까
-
미쿠 귀여워 10
-
오르비 안녕히주무세요 24
-
게이글쓰는걸로 맨날까이고 저격 당했는대 무시하고 꾸준히 쓰는거보면 사실 강철멘탈일수도 행복해라
-
내일 경찰서 가려하는데 법쪽 관련해서 지식이 풍부하신 분 쪽지 주세요..
-
그 숫자가 워낙 많아서 생지는 표본이 심각해지지는 않음
-
흠
-
대충 연고공~약수 정도 나오지 않을까
-
웬만하면 다 친하게 지내고 싶다
-
부활해라 게이야
-
작년 현역 3모 58에서 올해 3모 80 나옴 근데 미적은 해도 해도 는다는 느낌이 안 듦
-
이거들어바 13
굿
-
아무리 그래도 비서울 비대구에서는 아직도 무지성 생지가 많은데
-
캬캬캬 251130 해설 ㄱㄱㄱ
-
??
-
아 메타 안도니 15
괜히했노.
-
심지어 가난하기까지
-
안녕하세요호잇저는저능부엉이티비에저능부엉이입니다 어디감? 반수한다고 하지 않앗나
-
안녕하세용 4
늦은 인사 드려용
-
어떤지 아는법 잇나
-
근데 재릅하실려나
-
덕분에 오르비 안들어가고 수학공부하러감
-
옯스타 홍보함 0
@cheri_tokki
-
디엠 나눴습니다 11
걱정하지는 않으셔도 될것 같습니다. 항상 현생 응원합니다 선생님
-
예전에 사람들 인증하면 댓글 20개는 달렸던거같은데
-
벌써 거의 도착이란말이지 으흐흐
-
ㅇㅈ 9
입술에 왜케 생기가 업지
-
이새기 편하게 대해주니까 사용자가 친구같지?
-
저는 오르비 시작한 거랑 여친한테 큰 거짓말 쳐서 밖에서 무릎꿇고 빈 거
첫번째 댓글의 주인공이 되어보세요.