수학잘하시는분 저 좀 도와주세요ㅠ제발
게시글 주소: https://orbi.kr/00070202161
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데
수학적 오류가 있을지 너무 걱정돼요...ㅠㅜ
진짜 조금씩만 보시고 충고해주셔도 너무 감사하니까
제발 저 좀 도와주세요...
미적분학은 무한을 사용해 유한을 연구하고, 무제한을 사용해 제한된 것을 연구하고, 직선을 사용해 곡선을 연구한다."라는 문장이 가장 인상깊다. 이 한문장으로 심오하고 단 한 가지 개념을 이해하기 위해서도 방대한 배경지식을 필요로 하는 미적분을 함축할 수 있다는 점에서 그러하다. (거의 선에 가까운)무한한 직사각형들을 통해 평면의 넓이를 구하고 그 넓이들을 통해 입체적인 부피를 구할 수 있게 하는 것과 직선을 통해 곡선을 이해한 대표적 예인 원으로 각각 내접하고 외접하는 정육각형, 정십이각형, 정이십사각형, ... 무한에 가까이 가면 곡선의 형태를 띠게 되는 것을 볼 수 있다.(아르키메데스가 원주율을 구한 방법인 조임법을 기반으로 무한의 원리가 곡선을 이해가능하게 해준다. 아르키메데스는 또 다른 곡선인 포물선의 활꼴의 넓이도 무한히 많은 삼각형 조각으로 이루어져 있다고 재해석하여 구해냈다.)
제논의 양분의 역설, 아킬레스와 거북 역설, 화살의 역설을 미적분학을 이용해 풀이할 수 있다. 예를 들어 초속 1미터로 달리는 거북이 아킬레스보다 10미터 앞에서 출발하지만, 아킬레스가 거북보다 10배 빠르다면 아킬레스는 거북의 출발지점까지 가는 데에 1초 걸린다. 그동안 거북은 1미터를 이동할 것이고 그 차이만큼 가는 데에 아킬레스는 다시 0.1초가 걸리고 이것이 반복되면 무한급수로 1.111...초인 10/9초가 된다는 것을 알 수 있다. 제논은 시간과 공간이 연속적으로 존재한다는 사실 즉, 시공간을 끝없이 계속 쪼갤 수 있다는 것을 역설의 모순을 통한 증명으로 귀류법을 통해 반박한다. 그러나 위에 예로 반박했듯이 따라잡는 간격이 무한히 줄어들어 무한한 시간이 걸린다는 제논의 주장은 줄어드는 거리가 유한한 거리로 수렴하는 까닭에 거짓이 된다. 이로써 우리는 무한에 대해 한층 더 알 수 있다.
무한은 모든 양수보다 작지만 0보다 큰, 한없이 무한대로 작은 수인 무한소의 형태로도 존재한다. 만약 기존의 엑스라는 양이 아주 약간 변해 엑스 더하기 델타엑스가 되었다고 가정하자. 이 경우 입력에 일어난 작은 변화 델타엑스가 작은 변화 델타와이를 이끌어낸다. 그리고 작은 변화 델타엑스가 무한히 작아지면 가장 큰 몫을 제외하고 정답에 기여하는 나머지 몫을 모두 무시하는 사고방식을 적용할 수 있다. 이때의 델타엑스는 디엑스로 변하며 무한소를 디엑스처럼 사용하는 이 방법은 극한을 사용해 바꿔 기술할 수 있다. 그리고 이때의 무한소를 미분소라고 가리키는 것이다. 이 개념을 적용하면 엑스와이 평면 위에 있는 어떠한 곡선 그래프의 기울기는 와이의 도함수이며 델타엑스가 0에 접근할 때 델타와이/델타엑스(분자:델타와이,분모:델타엑스)의 극한값으로 정의된다. 여기에 미분소를 사용하면 디와이/디엑스로 표현된다. 그렇다면 우린 특정곡선 와이는 엑스세제곱의 기울기는 (변화를 나타낼 만한 디엑스 항을 제외한 다른 디엑스제곱, 디엑스세제곱 항은 버리는 식으로 계산하여) 삼엑스제곱임을 구할 수 있다.
(라이프니츠)
(라이프니츠에 가능하다면 적분 내용도 쓰고 싶었는데 짧게 같이 넣을 방법은 없을까요....??)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 개 춥네 0
아
-
강철중 수업 2
체감이 2050학년도 수능 대비같음 저능해서 울었어
-
다음 칼럼으로 이거 써보려고 하는데 어떻습니까
-
팔로우 박아라 3
맞팔은 안해준다
-
한완수 교과개념 0
그냥 개념 독학서인가요?? 난이도가 어떤가여
-
너무 행복함... 이런 사람이 날 알아봐주는게 너무 좋아
-
열이 야발거
-
에어컨 자리 많이 추울까요?
-
보존력은 의외로 5
빵꾸가 잇으면 안됨
-
이제 슬슬..
-
그리고 그냥 대행 계속 바꿔가면서 하는게 나라 더 잘돌아갈거같은데
-
농어촌 떡밥 터트리고 산화한 키모님과 친구 뒷담까다 걸리신 팜하님을 비춰보아...
-
연애하고 싶다 8
얼굴도 성격도 외모도 전부 나랑 엇비슷한 사람만 만나도 만족하겠지만 나한테 존나존나...
-
재수생이고 작수 때 언매는 다 맞았는데 (언매가쉽긴했어요) 현역때 수학을 안 해서...
-
소소한 행복 11
음 좋아
-
미기확 작년정도의 수준으로 출제된다는 가정하에 미적 허수들이 떠나면 미적 표점은...
-
그런가
-
음
-
아직 모든 과목 개념강의 듣고 있는데 하루종일 개념강의만 들어도 되는걸까요.....
-
아직도 못떠난 98년생부터 02년생들까지 망령들이 넘쳐나는것같노
-
다음닉 정함 10
알빠노
-
뜨거운 만둣국 먹고싶다 18
김치만두 한입 크게 베어물고싶다...0..0
-
프사돌 장애인같다 > 포한x 씹덕단 장애인같다 > 포함x 사실상 묶여서 욕...
-
애니메이션 있는 거랑 구성 개좋은데 원래는 강e분이나 엄선경 할라했는데 이건 못참겠슴
-
3덮 국수 인증 10
국어는 67분 걸렸는데 푸는 중간에 너무 술술 넘어가서 방심했음 영문도 모르게...
-
물론 혼자 살아가는 거 아니니까 타인의 시선을 신경써야겠지만 남이 날 어떻게...
-
진짜 자야겠다 2
컨디션 난조 너무 심하네
-
INFJ여자썰 0
교양수업 출첵조교였음 그사람도 나한테 호감있는 눈빚이었고 나도 호감있고 너무 얼굴이...
-
너무 의도가 투명하다 11
투명하다 transparentㅋㅋ
-
나중에 대구 여성분이랑 결혼해야지 진짜 서울이랑 차원이 다르노
-
망치들고 찾아감
-
취미로 방송해볼까 나도 코 하나로는 캐인한테 안지는데
-
물리 하세요~ 4
재미써요~
-
순서대로 보시면 댑니다 1. 수강후기에 이*건이라는 사람이 김범준 속마음 분석...
-
하늬대가고싶노 3
노
-
저 요리를 먹을 수 있다면 5만원 지불 가능
-
누구야
-
씽어쏭 0
난쥬카이노 요루오 스고시탓테 에라레누요 아이세테루오 나라베테미테~
-
상처받아서 자러감
-
그 당시 철 모르고 행했다 하더라도 도를 넘어서는 거는 왠만한 친구들 뇌리에서 쉽게...
-
약간의블핑과 여자친구
-
팔로우 받습니다 3
맞팔은 안해드립니다
-
급성 철 중독으로 사망할수도 있음
-
돈보내주세요
-
110530569007 신한 1원만 줍셔
-
작수 끝나고 대체적으로 1컷 예상이 42-41이었고 44 부르는 새끼 있으면 때려...
-
라떼는 아이민 앞자리가 7 8 9였는데
-
님드라 나 언매 4
하루에 평가원 한세트후 분석 교사경 부족한부분 10문제씩 꾸준히하고 있는데 부족한가...
-
확통런 기하런때메 미쳐날뛰는거 아님? 진짜 매년 기조가 바뀌니까 너무 공부하기가 어렵네
첫번째 댓글의 주인공이 되어보세요.