샌드위치 정리 감성 (ft. 극단적 사고하기, 열린 사고)
게시글 주소: https://orbi.kr/00070160414
h(x)를 정리해 봅시다.
그래프 그려보시면 대충 사다리꼴 하나가 나옵니다.
a도 모르고 b도 모르고 k도 몰라서
어디서부터 뭘 할 수 있을까 처음에 막막합니다.
그런데 이 조건에 초점을 두어 봅니다.
우선 x가 0 이하일 때에는 당연합니다.
0은 0 이하이고 동시에 0은 0 이상이기 때문입니다.
그리고 구간 [0, 2]에서는 생각하기가 복잡합니다.
앞서 x가 0 이하일 때를 살펴본 것을
x가 충분히 작을 때를 살펴본 것이라 생각합시다.
그러면 우리는 대칭적으로 x가 충분히 클 때를 살펴보고 싶습니다.
그런데 x>2일 때 g(x)=0입니다.
그래서 x>2일 때 h(x)도 0을 함숫값으로 가집니다.
이때 h(x)=k(a+b-2)였기 때문에 a+b=2임을 확인할 수 있습니다.
그러면 다음과 같이 h(x)식을 다시 작성해줄 수 있는데
생각하기가 훨씬 편해집니다.
이제 함수 g(x)도 h(x)도 x=1에 대해 대칭이기 때문에
함수 g(x)-h(x)를 구간 [0, 1]에서만 살펴봐주어도 되겠습니다.
이제 구간 [0, 1]에서의 적분값이 최소가 되도록 해 봅시다!
만약 a가 모든 실수를 범위로 한다면
적분값이 a에 대한 이차함수이기 때문에 a=1 넣고 끝내면 되겠지만
a<b 조건에서 0<a<1임을 확인하실 수 있습니다.
따라서 그런 식으로 문제가 풀리지 않을 것이라는 것을 확인하시면 좋습니다.
아직 이 조건을 제대로 활용해주지 않았는데,
마찬가지로 구간 [0, 1]에서만 신경써주면 되겠습니다.
이때 구간 [0, a)나 [a, 1]이나 모두 최고차항의 계수가 음수인
이차함수의 그래프를 보고 있으므로 대칭축이 어디에 있든
x=0, x=a, 그리고 x=1에서의 함숫값이 음수가 아니기만 하면
위의 부등식이 성립할 것임을 확인할 수 있습니다.
이는 x=0과 x=a, 그리고 x=1을 기준으로 대칭축의 위치를 나누어 보시고
하나씩 판단해 보시면 금방 확인하실 수 있습니다.
0<a<1이므로 남는 조건은 다음의 부등식입니다.
이를 통해 주어진 적분값을 나타낼 수 있습니다.
그렇다면 주어진 적분값의 최솟값은 위 부등식 우변의
a에 대한 삼차함수일 것임을 확인할 수 있습니다.
우변의 삼차함수는 0<a<1일 때 a=2/3에서 극솟값을 가지므로
a, b, k의 값을 모두 결정할 수 있습니다.
다른 문제를 살펴봅시다!
앞서 a+b=2 조건을 발견한 것과 비슷하게 생각해 봅시다.
0<h<g 꼴에서 g=0이면 h=0임을 확인할 수 있었듯이
만약 2k-8=4k^2+14k라면 주어진
점 (k, f(k))와 점 (k+2, f(k+2)) 사이의 평균변화율도
2k-8일 것입니다.
위의 등식을 만족하는 k의 값은 -2와 -1입니다.
이후 계산하여 f(x)의 이차항, 일차항 계수를 확인해주었으면 됩니다.
p.s. 고정 관념을 버리는 것은 수능 수학 공부에 도움이 됩니다.
시도해 볼 수 있는 풀이가 n가지 있을 때 하나만 올바르다면
그 하나를 찾아내는 것이 실력이라고 생각합니다.
구간 [0, x]에서 어떤 함수를 적분한 x에 대한 함수가 주어졌다고
무조건 미분해 보는 것이 답이 아니고,
평균변화율 꼴로 식이 주어졌다고
무조건 기하적으로 해석해 보는 것이 답이 아닙니다.
위 문항 2025학년도 9월 21번도 점 (k, f(k))과 점 (k+2, f(k+2)) 사이의
평균변화율로 직관적으로 이해해보려 하는 동시에
k가 정수임을 신경쓰며 주어진 부등식을 다루어보려 했다면
현장에서 빠르게 정답을 내기 쉽지 않았을 것입니다.
2022학년도 9월 14번 변형 문항인데,
x<0에서의 g(x)를 점 (0, f(0))과 점 (x, f(x)) 사이의 평균변화율로
바라볼 필요 없이 그냥 식 정리해서 이차함수로 다루시면 됩니다.
비슷한 느낌의 기출 하나가 있었는데 못 찾겠어서 나중에 찾으면 댓글로 언급해두겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
수학 실력이 늘면 늘수록 점점 생각이 확고해짐 특히 작년에 현우진 듣다가 올해는...
-
이명학 신택스 0
이거 왤케 듣기가 힘드냐 갈아탈까
-
기습 선넘질받 9
욕박아도 괜찮음 ㅇㅇ 근데 상처는 좀 받을거긴함
-
kbs 들을건데 이거 살까요? 괜찮아보임?
-
격자점 로그 실생활 이런거
-
질문받음 10
ㅇㅇ
-
https://youtube.com/@head_master_062?si=tdqeZsr...
-
쿄오비쥬오이쟝
-
지금까지 독서랑 문학 인강 한 번도 안 들어봐서 이번에 한 번 들어보려고 하는데...
-
전 고닉 중에 두명 비고닉 중에 한명 있는데 일단
-
우리안경찐따존못오르비언들은 여기가 현생인데
-
ㅠㅠ
-
솔직히 재미있음 물리에 관심도 많고 근데 성적이 안나와 나 믈리 잘해 근데 그게...
-
언매 규칙 활용 5
손을 잡다 할때 잡다가 왜 규칙이 되는건지 설명해주실분
-
네임드들끼리 만나서 연애도 하고 아주 그냥 뒤지게 재밋는썰들 많았음 요즘애들은 그런거없.제?
-
진짜 개 춥네 0
아
-
강철중 수업 2
체감이 2050학년도 수능 대비같음 저능해서 울었어
-
팔로우 박아라 3
맞팔은 안해준다
-
한완수 교과개념 0
그냥 개념 독학서인가요?? 난이도가 어떤가여
-
너무 행복함... 이런 사람이 날 알아봐주는게 너무 좋아
-
열이 야발거
-
에어컨 자리 많이 추울까요?
-
보존력은 의외로 5
빵꾸가 잇으면 안됨
-
이제 슬슬..
-
그리고 그냥 대행 계속 바꿔가면서 하는게 나라 더 잘돌아갈거같은데
-
농어촌 떡밥 터트리고 산화한 키모님과 친구 뒷담까다 걸리신 팜하님을 비춰보아...
-
연애하고 싶다 8
얼굴도 성격도 외모도 전부 나랑 엇비슷한 사람만 만나도 만족하겠지만 나한테 존나존나...
-
재수생이고 작수 때 언매는 다 맞았는데 (언매가쉽긴했어요) 현역때 수학을 안 해서...
-
소소한 행복 11
음 좋아
-
미기확 작년정도의 수준으로 출제된다는 가정하에 미적 허수들이 떠나면 미적 표점은...
-
그런가
-
음
-
아직 모든 과목 개념강의 듣고 있는데 하루종일 개념강의만 들어도 되는걸까요.....
-
아직도 못떠난 98년생부터 02년생들까지 망령들이 넘쳐나는것같노
-
다음닉 정함 10
알빠노
-
뜨거운 만둣국 먹고싶다 19
김치만두 한입 크게 베어물고싶다...0..0
-
프사돌 장애인같다 > 포한x 씹덕단 장애인같다 > 포함x 사실상 묶여서 욕...
-
애니메이션 있는 거랑 구성 개좋은데 원래는 강e분이나 엄선경 할라했는데 이건 못참겠슴
-
3덮 국수 인증 10
국어는 67분 걸렸는데 푸는 중간에 너무 술술 넘어가서 방심했음 영문도 모르게...
-
물론 혼자 살아가는 거 아니니까 타인의 시선을 신경써야겠지만 남이 날 어떻게...
-
진짜 자야겠다 2
컨디션 난조 너무 심하네
-
INFJ여자썰 0
교양수업 출첵조교였음 그사람도 나한테 호감있는 눈빚이었고 나도 호감있고 너무 얼굴이...
-
너무 의도가 투명하다 11
투명하다 transparentㅋㅋ
-
나중에 대구 여성분이랑 결혼해야지 진짜 서울이랑 차원이 다르노
-
망치들고 찾아감
-
취미로 방송해볼까 나도 코 하나로는 캐인한테 안지는데
-
물리 하세요~ 4
재미써요~
-
순서대로 보시면 댑니다 1. 수강후기에 이*건이라는 사람이 김범준 속마음 분석...