샌드위치 정리 감성 (ft. 극단적 사고하기, 열린 사고)
게시글 주소: https://orbi.kr/00070160414
h(x)를 정리해 봅시다.
그래프 그려보시면 대충 사다리꼴 하나가 나옵니다.
a도 모르고 b도 모르고 k도 몰라서
어디서부터 뭘 할 수 있을까 처음에 막막합니다.
그런데 이 조건에 초점을 두어 봅니다.
우선 x가 0 이하일 때에는 당연합니다.
0은 0 이하이고 동시에 0은 0 이상이기 때문입니다.
그리고 구간 [0, 2]에서는 생각하기가 복잡합니다.
앞서 x가 0 이하일 때를 살펴본 것을
x가 충분히 작을 때를 살펴본 것이라 생각합시다.
그러면 우리는 대칭적으로 x가 충분히 클 때를 살펴보고 싶습니다.
그런데 x>2일 때 g(x)=0입니다.
그래서 x>2일 때 h(x)도 0을 함숫값으로 가집니다.
이때 h(x)=k(a+b-2)였기 때문에 a+b=2임을 확인할 수 있습니다.
그러면 다음과 같이 h(x)식을 다시 작성해줄 수 있는데
생각하기가 훨씬 편해집니다.
이제 함수 g(x)도 h(x)도 x=1에 대해 대칭이기 때문에
함수 g(x)-h(x)를 구간 [0, 1]에서만 살펴봐주어도 되겠습니다.
이제 구간 [0, 1]에서의 적분값이 최소가 되도록 해 봅시다!
만약 a가 모든 실수를 범위로 한다면
적분값이 a에 대한 이차함수이기 때문에 a=1 넣고 끝내면 되겠지만
a<b 조건에서 0<a<1임을 확인하실 수 있습니다.
따라서 그런 식으로 문제가 풀리지 않을 것이라는 것을 확인하시면 좋습니다.
아직 이 조건을 제대로 활용해주지 않았는데,
마찬가지로 구간 [0, 1]에서만 신경써주면 되겠습니다.
이때 구간 [0, a)나 [a, 1]이나 모두 최고차항의 계수가 음수인
이차함수의 그래프를 보고 있으므로 대칭축이 어디에 있든
x=0, x=a, 그리고 x=1에서의 함숫값이 음수가 아니기만 하면
위의 부등식이 성립할 것임을 확인할 수 있습니다.
이는 x=0과 x=a, 그리고 x=1을 기준으로 대칭축의 위치를 나누어 보시고
하나씩 판단해 보시면 금방 확인하실 수 있습니다.
0<a<1이므로 남는 조건은 다음의 부등식입니다.
이를 통해 주어진 적분값을 나타낼 수 있습니다.
그렇다면 주어진 적분값의 최솟값은 위 부등식 우변의
a에 대한 삼차함수일 것임을 확인할 수 있습니다.
우변의 삼차함수는 0<a<1일 때 a=2/3에서 극솟값을 가지므로
a, b, k의 값을 모두 결정할 수 있습니다.
다른 문제를 살펴봅시다!
앞서 a+b=2 조건을 발견한 것과 비슷하게 생각해 봅시다.
0<h<g 꼴에서 g=0이면 h=0임을 확인할 수 있었듯이
만약 2k-8=4k^2+14k라면 주어진
점 (k, f(k))와 점 (k+2, f(k+2)) 사이의 평균변화율도
2k-8일 것입니다.
위의 등식을 만족하는 k의 값은 -2와 -1입니다.
이후 계산하여 f(x)의 이차항, 일차항 계수를 확인해주었으면 됩니다.
p.s. 고정 관념을 버리는 것은 수능 수학 공부에 도움이 됩니다.
시도해 볼 수 있는 풀이가 n가지 있을 때 하나만 올바르다면
그 하나를 찾아내는 것이 실력이라고 생각합니다.
구간 [0, x]에서 어떤 함수를 적분한 x에 대한 함수가 주어졌다고
무조건 미분해 보는 것이 답이 아니고,
평균변화율 꼴로 식이 주어졌다고
무조건 기하적으로 해석해 보는 것이 답이 아닙니다.
위 문항 2025학년도 9월 21번도 점 (k, f(k))과 점 (k+2, f(k+2)) 사이의
평균변화율로 직관적으로 이해해보려 하는 동시에
k가 정수임을 신경쓰며 주어진 부등식을 다루어보려 했다면
현장에서 빠르게 정답을 내기 쉽지 않았을 것입니다.
2022학년도 9월 14번 변형 문항인데,
x<0에서의 g(x)를 점 (0, f(0))과 점 (x, f(x)) 사이의 평균변화율로
바라볼 필요 없이 그냥 식 정리해서 이차함수로 다루시면 됩니다.
비슷한 느낌의 기출 하나가 있었는데 못 찾겠어서 나중에 찾으면 댓글로 언급해두겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
하루 얼마나 피심?
-
그냥 살짝 이벤트 같은거지 응응 어떻게 사람이 상시 ms 상태겟어
-
아 섹스 2
섹스니깐.
-
하지만 고점견을 막을 수 없다
-
난 상시 ms인데 내 친구들은 요즘 랜덤 ms가 된 듯
-
시험장에서도 한 20초정돈 눈풀 하고 들어가는거도 좋지 않을ㅋ가
-
고3 수학 10
이번 3모 51점 받았습니다(4등급), 4점짜리 주로 틀리는거 같은데 시발점 워크북...
-
[소개 및 성적인증] https://orbi.kr/00071877183 [팀원...
-
이나경2 2
모 오르비언 분께서 좋아하시던 짤이었는데
-
모고 29번 30번 이런거 푸시는분들은 문제 보고 풀이과정 생각나는거 몇분정도...
-
요즘하는거 13
눈풀로 상황 맞추고 마지막 대입만 지피티 시키기
-
이거 답 맞나 16
https://orbi.kr/00072767952/%EC%88%982-%EC%A0%8...
-
우리학교가 좋은학교가 아니라 애들이 오르비를 안쓰나..
-
존나 대충 살아야지 딱 올해만 쫌 열심히 산다
-
문학 어려워! 3
죽 죽 죽 죽을래
-
얀데레 메나 brain
-
쌤들이 웃긴썰풀어서 웃다가도 갑자기 눈물남 너무 딴세상 얘기같음
-
정답률 되게 낮네 14
28퍼라는데
-
급수 어려워! 4
죽을래!
-
이나경 2
-
https://orbi.kr/00071896787/%ED%95%AD%EC%83%81-...
-
원래는 괴로움과 안언조비카이 사이의 무언가엿는데 이게 몇달 지나니까 걍...
-
현역 수능 ㅈ망-> 낮은 지거국 다니다가 반수로 인하대 입학-> 입학했을 때부터...
-
부엉이 잘가요… 0
응원했어요.. 행복하길…
-
그럼 되게 신기할 듯
-
ㅋㅋ 7
낼도 그냥 카페인 악깡버?
-
얼버기 4
사실 얼버잠
-
근데 난 새벽에만 깨어있다 ?
-
이젠진짜잔다 2
-
잘자라 15
좀자라
-
개 찝찝하겠네. 꼭 아이스크림을 비치하도록
-
무지 5
개같다
-
기분좋게 자러갑니다. 다들 안녕히 주무시길
-
집에서 하니까 생각이 많아지고 생각이 많아지니까 공부가 안되고 공부가 안되니까...
-
버스 안에서 는 2
웹툰인디
-
그니까 와서 사줘
-
재밌었다 18
다시 현생으로
-
자자 13
자자
-
다르다고 1
보고있나
-
밸런스 조절을 위해 오르비를 계속 하겟습니다
-
진짜 모름
-
인초상 탈릅 예상 반응 13
.
-
다 어디갓니
-
아오 물2평
-
사탐으로 가버렸 뉴비만 받음
-
집에서 집중이 하나도 안됨
-
헬스터디 2
근데 헬스터디 국어는 왜 어떻게 공부하는지 안알려주냐 짜치게