구간 별 함수 영향력 죽이기
게시글 주소: https://orbi.kr/00070041033
주어진 함수 f(x)의 그래프가 다음과 같습니다.
단순하게 생각할 때 이 함수에 어떤 함수 g(x)를 곱하면
구간 [t-1, t+1]에선 g(x)의 함숫값이 0에 더 가까워지고
구간 (-\infty, t-1)과 구간 (t+1, \infty)에선 g(x)의 함숫값이
힘을 잃어버리게 될 것입니다.
예를 들어 위 함수에 cos(ㅠx)를 곱하면 그래프가 다음과 같습니다.
t=1일 때 구간 (-\infty, 0)와 구간 (2, \infty)에서는
g(x)가 아무런 힘을 쓰지 못하게 되었고,
구간 [0, 2]에서는 곡선 g(x)의 그래프와 비교할 때
각각 x=t-1과 x=t+1에 해당하는 부분에 가까울수록
그래프가 0에 더 가까워졌음을 확인할 수 있습니다.
미분해서 도함수의 부호를 조사하는 것도 의미가 있겠지만
직관적으로 생각해 볼 때 x절편 조사해두고
기존 곡선보다 조금씩 y축에 더 가깝게 그래프를 그려주면
간단하게 이해해 보는 데 도움이 될 수 있겠습니다.
a=-3, b=-4 정도로 예시를 들어보았을 때
함수 f(x)-|f(x)|의 그래프는 다음과 같습니다.
f(x)의 함숫값이 음이 아닌 실수일 때는 0을,
음의 실수일 때는 그것의 두 배인 값을
함숫값으로 하는 함수임을 확인할 수 있습니다.
만약 함수 f(t)-|f(t)|를 구간 [0, x]에서 적분한 것을
x에 대한 함수 h(x)라 생각해 본다면
(a, b)=(-3, -4)인 경우에 h(x)는
어떤 양의 실수 k에 대해 구간 (-\infty, -k)와
구간 (k, \infty)에서는 상수함수이고
구간 [-k, k]에서는 감소한다 생각할 수 있겠습니다.
비슷한 맥락입니다.
f(x)는 대충 sin함수이고 f(ㅠx)도 마찬가지입니다.
g(x)는 구간에 따라 0 또는 1을 함숫값으로 가집니다.
g(x)=0인 구간에서 f(x)는 소멸하고
g(x)=1 구간에서 f(x)는 유지될 것입니다.
이러한 논리로 두 적분값을 확인해 보시면
어떤 값 k가 양의 실수 p에 대해 0 이상 p 이하일 때
k=p가 되어야 하는 느낌으로 풀이를 이어가실 수 있습니다.
(나) 조건에 g(x)에 곱해져있는 두 함수의 그래프를 확인해보면 다음과 같습니다.
먼저 함수 |x(x-1)|+x(x-1)의 경우
구간 (-\infty, 0)과 구간 (1, \infty)에선 0을,
구간 [0, 1]에서는 각 x값에 대해 2x(x-1)을 함숫값으로 합니다.
함수 |(x-1)(x+2)|-(x-1)(x+2)의 경우
구간 [-2, 1]에서는 0을,
구간 (-\infty, -2)과 구간 (1, \infty)에서는 -2(x-1)(x+2)을
함숫값으로 하는 것을 확인할 수 있습니다.
여기에 어떤 함수 g(x)를 곱한다면
구간 별로 영향력이 변할 것입니다.
강해지거나, 줄어들거나, 사라질 것입니다.
강화, 약화, 소멸이라고도 이야기해 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그레이엄 하먼은 아직 살아있는데 문항 출제 잘못하면 평가원 또 사과해야하는거 아닌지...
-
꽤나 오래된 역사를 지닌 곳
-
동대 입학처 오늘 일 함?아는사람
-
동아의 카관의 let’s go
-
국시 자격 여부는 교육부 소관이라고 그럼 불인증먹어도 국시칠수있을듯..? 교육부...
-
잇올도착 1
투데이스타트
-
경지를 향한 단련이 필요하다
-
ㄹㅇ
-
오늘 밤에 하면 마감되어있을까요?ㅠ
-
손 핏줄이 갑자기 무슨 헬창 급으로 올라오는데 이거 왜이럼
-
10만원 넘지 않고 스테이크 맛있는 뷔페로요
-
나는 왤케 4
아파트 외벽에 붙어서 도망치는 꿈을 많이 꾸냐 전생에 도마뱀이었나
-
개빻았는데 빨리자서 다행이다
-
수분감 수1특 5
솔직히 틀딱기출문제 거른거 많음...
-
영어는 그래도 약간? 재밌으니까
-
춤추는 너의 모습은
-
비도 조금씩 오는데 달리니까 시원하고 좋아요
-
희망을 가chill guy
-
많을라나 막상 학교첫날갓는데 마음에들면어카지
-
술이 아직도 안 깨서 어지러운데 ㅅㅂ 인생
-
인강 한번 듣고 그 내용을 어케 다 기억하고 적어내림? 이게 될 정도면 애초에...
-
화작 교재 추천 0
화작 기출교재 어떤게 좋을까요? 강의는 안 들을 예정인데 뭐가 가장 괜찮을지 추천좀 해주세요
-
파송송 계란탁
-
자야지 0
-
얘 태어날때 데뷔했는데
-
집가는길 1
으어
-
공공인재는 최초합해서 4년 반액장학이고 경영은 추합 기다리고있는데 장학금...
-
오르비는 망했어 2
-
잠버릇 고약하네..
-
으으 2
피곤피곤
-
단국약 예비 31번, 전북약 실공10등 둘중 하나라도 될 가능성 있을까요?
-
주가조작으로 잡혀가셨다네요 조의금은 여기로
-
야추 ㅇㅈ 4
'옯붕아 이리와서 앉아봐라.'
-
사랑해요
-
진짜 ㅇㅈ마렵네 2
오랜된 생각이다
-
동아리 195화 3
이게 완결이고 뒤에 화는 안 볼거임뇨
-
기차지나간당 6
부지런행
-
고전소설 진짜 한 20분 박았는데 3틀하고 멸망함 아침에 이거 줄거리까지 보고갔는데...
-
명절이 싫다 0
싫어
-
얼버기 1
ㄹㅈㄷ 갓생이네요
-
다 자셈 ㅇㅇ 7
난 안 잠
-
어느정도 반인가요? 시대 낮반보다 강대스투가 낫다는데, 이정도면 스투 가는 게 나을까요?
-
그래 뭐... 짜피 최초합은 물건너간지 오래인데
-
들어도 돼요? 고2때까진 감으로 1 맞았는데 고3 기출 푸니까 바로 85점...
-
떨치고 자야지 1
레어생각만하면 잠이 안와요
-
항상 행복하세요
-
제일 재밋어 이상태로 짝녀랑 대화하는것듀재밌옸는데
-
살면서 케이크 딱 한번 먹어봤는데(어릴때 알러지때매 안먹음) 커서 알러지는 나아져서...
-
둘이똑같음
오 뭔가 저랑 사고방식이 비슷한 부분이 있군요 좋은 글 잘 보고 가요~
이거 진짜꿀팁인데
전 아니에여ㅠㅠ 직관적으로 푸는걸 좋아할뿐..
와우~~