수학 22번 이렇게 푸신 분 없나요
게시글 주소: https://orbi.kr/00069961121
a3을 미지수로 두고 여기서 가능한 a5까지의 케이스 나열
->
a3, a4, a5에 대한 케이스 확보
여기서 역으로 a1,a2 추적 후 주어진 조건이 m=1,2때 성립하는 경우 제외
이렇게 하면 빠뜨리는 그림은 잘 안나올 것 같던데
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
폐급 인생 1
자야하는데 아아못 자고 놀고있으므,,,,
-
아 ㅈ됐다 진짜 2
내일 1교시 시험인데 1회독도 안했네
-
저도 열등감이 엄청 심한 편이었는데 저런 생각을 어느 정도 받아들이니까 좀 그러려니...
-
잔인한거임 동시에 열심히 살아야 하는 동기
-
이걸무료로푸네ㄷㄷ
-
물론 아이언맨에게 무한한 감사를 하지만 세상에 나빼고 모든 남지를 지웠으면 내가...
-
내 경쟁상대 3
어제의 나임
-
하기시작하면 밑바닥을 보게됨 보고싶지않음 더이상
-
근데 그 관리를 안해서 그렇지 제발 운동하고 + 메이크업하고 + 패션만 깔끔하게...
-
사문을 조져보자
-
어차피 내 인생 주인공은 나니까
-
시험 7시간도 안남앗는데 1회독도 못한 나랑 수능 공부하는데 아직도 안지는 애들이라는거임...
-
하나가 개 심각해짐
-
인생이 열등감임 0
그냥 어렸을 때부터. 초딩 중딩 고딩 지금도 열등감 덩어리임. 열등감 든 것들만...
-
당장 자기관리를 시작해야함 ☠️
-
요즘 느끼는건데 세상엔 생각보다 인생을 돌아가는사람이 많음 당연히 하고싶은게...
-
10등까진 감
-
나도 열등감 7
지금 등에 열 나서 땀이 존나 나서 잠이 안오는데 해결법좀
-
고딩때 공부 못하던 친구 내가 존나 학원 같이가자고 꼬드겨서 학군지 학원가...
-
변한건 너야 변한 널 대하는 내 태도가 바뀐거야
-
뭔가 계속 그래야할거같다고 느낌 일을 빡세게 두개하라는게 아니라 인스타나 블로그나...
-
tem.com/npay
-
그걸 참고 들어줬으면 좋겠어
-
잠을 자야해요 8
좋은 밤 되세요오..
-
문학청년 있음? 3
소설책 추천 좀 해주
-
8시간이 딱 졸라 개운함
-
능지가 2
중하능지정도 되는듯 시바
-
생활패턴 ㅁㅌㅊ 15
2-3시취침 6시기상 1일 양치3회 샤워2회 화장매일아침함
-
사실 시험만 아니면 하루는 째도 되긴 하는데
-
남들 다 안 하는 걸 내가 먼저 하기 시작했다면 나는 선두자라고 마냥 내세울 게...
-
재밋을듯
-
잠좀깻다 0
첫시험 다뒤졋다 ㅋㅋ
-
씻긴씻는데 깨끗히 안씻더라
-
허걱슨 ㄷㄷ 비누냄새난다고 F맞겠네
-
느와르물 틀딱 애니들 다 수작 이상인데 아무튼 ㅈ세계물이 문제임 최신 애니 진짜 볼게 없어
-
의지박약이라 일어나자마자 씻어야되는데 쉽지 않네..
-
토토 간접체험한듯.. 확 빠져듬 좀만 더하면 될것 같아서 계속 박음..
-
노베 도형 강의였었나 비율 딱딱 맞는거에 희열느끼셨는지 흐흫하면서 설명해주시는데...
-
막 학교에서 등급말고 몇점이상 넘기명 A,B,C 이런 식으로 나오는 거...
-
여친이 편지 보내줬는데 뭔말인지 모르겠어서 해석좀 해주세요...
-
딴거 할 거 많긴 한데 6모전에 수특 공부 해야할까요 아니면 걍 딴과목 할까요별개로...
-
카약카약카약! 카약카약사탐날먹카약카약카약카약!!
-
안녕? 2
반가워
-
한국 현대소설 중에 예전 고향의 친구에게 전화가 와서 한 번 놀러가기로 했지만 막상...
-
tem.com/npay
-
상대적으로 차이가 나면 자격지심을 느낄 수도 있지 않을까요?
-
러셀에서 전대실모 본다고 5덮을 안봐서 다른 학원가서 보려 하는데 어디가 있을까요??
-
전공 공부하기 힘드네요...
-
4덮 물리 0
1페 어려웠다는 얘기가 많네 평소에 실모풀때 1페이지 그렇게 빨리 넘기는 편이...
-
성격까지 못생겨서...
전 a1=8의 배수+나머지 이렇게 했는데 틀림 ㅜ
오 이건 뭐지...
어차피 항 5개라 저는 걍 첫항 1 -1부터 10까지 체육했음 거기서 나오는 패턴으로 역추적
와.......ㄷㄷ
와 ㅋㅋㅋ
체육하셨다는 표현이 넘 재밌어요 ㅋㅋㅋㅋ
실모풀때도 모든항이 정수자연수 조건이고 바로 파악 안된다 싶으면 일단 넣어보고 패턴찾아서 순/역추적 연습을 해왔어서 그냥 뇌빼고 갔네요
저도 수열 추론 문항 풀 때 웬만하면 그렇게 답 내고 후에 다른 풀이, 예쁜 사고 과정 고민해 보는 편입니다 앞으로 과외생한테 설명할 때 "체육한다"라는 표현 종종 써야겠습니다 ㅋㅋㅋ
ㅜㅜ 저 마지막에 이렇게 쭉쭉쭉 갔는데 틀려버렸네요
그렇게 했는데 3을 더 더했네요 ㅠ
ㅜ.ㅠ 아 안되는 케이스를 못빼셨군요....
하나를 더 더해서 ㅠ
그렇게 해서 맞췄으요
그게 정석 아닌가여 제 해설강의는 그렇게 했어요
다르게 푼 분들도 있길래 궁금했네요
저도 a3 k로 잡고 a5=k이런식으로 풂
제 말이 그런듯요 ㅋ.ㅋ
그렇게 했어요...!!
근데 두번째 조건 빼먹어서 틀릴 뻔한 경우가 많더라구요
아~~~~~~
제가 그렇게 했다가 틀렸어요 ^ㅡㅠ
나만 a1 미지수 잡고 품?
저도 첨에 이렇게 생각했다가 케이스가 너무 어렵길래 좀 더 머리굴려서 본문처럼 푼거거든요
그게 되는구나..
ㅇㅇ a1 홀수 짝수 잡고 돌리면 되는데
a1 =|2k-1| 잡고 했을때 경우의 수 6가지 나오는 거 보면 더럽긴함
물론 전 짝수일때 까먹고 계산 안해서 틀림
수능장에서 풀라 했으면 저렇게 풀었을거 같음
저두 낑낑대다 그랬을듯
15일때랑 부담감이 진짜 말도 안되게 높을듯
저 그렇게 했는데 48 나옴..하나 빼먹었나

그렇게 풀었는데 왜…..그렇게 했는데 뭐 잘 못 더했나봄
다들 그렇게 풀었는데 63000 빠뜨린 분 많더라고요
사실상 같은 방법인데,
|a_m|=|a_(m+2)|가 성립하는 a_m을 구해보면, -6,-3,0,1,2라서,
a_3->a_2->a_1으로 진행하면서 조건 만족 안하는거랑 위에 다섯 숫자 배재해주면 깔끔
그렇게 풀었는데 왜 70이 나왔을까..
저랑 똑같은 분 드디어 발견했네요..
저도 이렇게 해서 맞있으요
0빠뜨림..
이렇게 했는데.. 왜 틀렸을까..
걍 다 풀고 22번하나 남았길래 확통 시험지 꺼내서 15분동안 두페이지 다 채워서 품 ㅋㅋ
그렇게 틀린
전 a1로 잡아서 케이스 ㅈㄴ 많이나옴 풀긴 햇는데 시간을 엄청 써버림..
a3 = 2k-1 or 0 or 2k or 4k or 8k •••으로 뒀네요
저도 글케 했는데 63000 빼먹어서 틀렸어요
저도 a3를 4k+1, 2, 3, 4 두고 품
잘 기억이 안나는데 홀일 때 짝일 때 0일 때 해서 절댓값 +-고려해서 케이스 5개해보믄 됨
저도 그렇게 풀엇어요 a3=k에 대한 네가지 경우에서 가능한 k가 여섯갠가 나오고 각각 a1,a2 구한 후 그 중에 조건 위배되는 거 거르기
저는 a1 미지수로 두고 확통 2페이지 써서 겨우풀었음 ㅋㅋㅋㅋ 왜 이문제 언급이 없지?했는데 알고보니 거의다 a3을 중심으로 풀었더라..
저도 그렇게
절댓값 고려안하고 싹다 양수로 보고 풀어서 52 나왔어요 …
그렇게 풀었는데 하나 더 더해서 67 나왔네요..
그렇게 풀었는데 54나옴 ㅠㅠㅠ