오공완 2024/11/9
게시글 주소: https://orbi.kr/00069837062
1. 공부한거 복기(복습 차원)
<수학>
- 수학적 귀납법의 증명에는 2가지 유형이 있다.
첫째로는 등식을 증명하는 유형이고, 두번째로는 부등식을 증명하는 유형이다.
n=k일 때 (부)등식이 성립한다고 가정한 후,
n=k+1일 때 좌변의 값을 계산과정을 거쳐
"n=k+1일 때 우변의 값과 비교할 수 있는 형태"로 만든다는 점에서 공통적이지만,
부등식은 그 값이 꼭 같지는 않을 수 있다는 점에서 차이가 있다. (*부등호가 두 개 쓰일 수 있다. --> 두 번을 거쳐 대소 판단)
- x좌표로 정의된 함수의 도함수의 함숫값을 구하는데 역함수의 미분법이 쓰일 수 있다.
함수 f(x)가 있고, 어떤 y값 t에 대하여 x좌표로 정의된 함수 g(x)가 존재한다고 주어졌을 때, f(g(t))=t이므로
함수 g(x)의 도함수의 함숫값을 역함수의 미분법을 통해
간접적으로 구할 수 있다. --> g'(t)=1/f'(g(t))
2. 아쉬운 점
오늘 순공시간이 좀 많이 부족했던 것 같다. 낼부터 마음잡고 다시 열심히 해보자!!
다들 오늘 하루도 수고 많으셨습니다~!
0 XDK (+10)
-
10
-
Bboong! Welcome to the moongtaenge world
-
샤프심은 허용이라길래 수학때 샤프심에 대고 보조선 그어도 되나요? 딱히 안잡을거 같긴 한데
-
앞에 유튜브 틀어놓고 한세트씩 풀면 기부니가 좋아짐
-
국어망한거생각나네 이번엔 신경안쓰고 차분하게 풀어야지ㅠ 작년에 유독 왜이렇게...
-
Songdo yonSei campuS Shinchon yonSei campuS 라고...
-
읽으면서 갑을병정(무) 속해있는 집단 쭉쓰는데 다들 이렇게 하시는거죠?
-
오늘수학에서실수를별로안할수있어서감사합니다...
-
딱한번 유유유ㅠㅠ
-
지금까지의 공부는 겸손하게 해왔다면 시험을 볼 때는 세상 오만하게 보는 것도 좋다...
-
쉬우면 무슨 의미가 있지 음
-
깜빡해서 주문을 못해서 피뎁으로 풀려는데... 월화수 하나씩 풀 실모 뭐가 좋을까요...
-
아 니드 썸바디
감삼돠
감삼돠
고맙똬