오공완 2024/11/9
게시글 주소: https://orbi.kr/00069837062
1. 공부한거 복기(복습 차원)
<수학>
- 수학적 귀납법의 증명에는 2가지 유형이 있다.
첫째로는 등식을 증명하는 유형이고, 두번째로는 부등식을 증명하는 유형이다.
n=k일 때 (부)등식이 성립한다고 가정한 후,
n=k+1일 때 좌변의 값을 계산과정을 거쳐
"n=k+1일 때 우변의 값과 비교할 수 있는 형태"로 만든다는 점에서 공통적이지만,
부등식은 그 값이 꼭 같지는 않을 수 있다는 점에서 차이가 있다. (*부등호가 두 개 쓰일 수 있다. --> 두 번을 거쳐 대소 판단)
- x좌표로 정의된 함수의 도함수의 함숫값을 구하는데 역함수의 미분법이 쓰일 수 있다.
함수 f(x)가 있고, 어떤 y값 t에 대하여 x좌표로 정의된 함수 g(x)가 존재한다고 주어졌을 때, f(g(t))=t이므로
함수 g(x)의 도함수의 함숫값을 역함수의 미분법을 통해
간접적으로 구할 수 있다. --> g'(t)=1/f'(g(t))
2. 아쉬운 점
오늘 순공시간이 좀 많이 부족했던 것 같다. 낼부터 마음잡고 다시 열심히 해보자!!
다들 오늘 하루도 수고 많으셨습니다~!
0 XDK (+10)
-
10
-
정보를 안넣으면 2.3인데 2핟년때 했던 정보를 넣으니까 2.9가 되더라고요…...
-
비독원 0
지금부터 비독원 베이스 하면 너무너무 늦은 걸까요...?? 글구 문기정도요......
-
에서 글적이다가 무슨 뜻임??? 진짜 모름;; 찾아봐도 안 나옴
-
국어는 모고보면 2등급 초에서 3등급까지 왔다갔다하는데 문학이 진짜 약해서 시는...
-
노력은 배신한다 0
작년 가을 중학교 공부 시작(하재호님과 비슷한 수준이었음) 작년 고2 11모...
-
안녕하세요 강남3구에 거주하는 중3입니다 고등학교 일반고 두개 고려하는데 , 둘다...
-
조드(자칭조드)가 07년생 경희의 ㅇㅈ으로 어그로 드럽게 끌고 그거에 속아서 덕코...
-
남자든 여자든레어템이죠?
감삼돠
감삼돠
고맙똬