수학 작년 7모 미적 29번 질문
게시글 주소: https://orbi.kr/00069766444
작년 7모 미적 29번 문제입니다.
해설에선 도함수가 연속이기 때문에 함수가 연속이라
(가)에서 추론되는 f(1)의 좌극한 값과 (나)에서 추론되는 f(1)의 함수값이 같다고 나와있습니다.
그런데 도함수가 연속이라 나와있지만 함수 또한 연속임을 이 문제에서 알 수 있나요?
물론 적분값이 나오려면 연속이여야 하겠지만 문제에서 어떻게 연속임을 추론할 수 있는지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수2 질문 5
서바이벌 25회 14번 풀다가 안풀려서 여기 올려봅니다. 수학 잘하시는분...
-
가위질 연습용 점선인가요??
-
파이널도 ㄱㅊ은가요? 아니면 파이널 별로면 강민철이나 김승리로 갈아탈거같은데.. 후기좀여
-
그럼요[그러묘] 3
하지만 현실 발음은 ㄴ이 첨가된 [그럼뇨]...
-
오늘은 공부 슬럼프와 관련된 글을 한 번 써볼까합니다. 슬럼프란 무엇일까요? 보통...
-
진짜 ㅈ같다
-
45번에 2번 ㄴ을 활용하여라 되어있는데 답지는 ㄱ을 활용하여로 써서 맞는 거라고...
-
이퀄 해설강의 0
어디서 보나용
-
1회는 42인데 2회는 39뜸 ㅜㅜㅜ 3목표인데 ㅈㄴ 걱정됌...
-
엡스키마 다듣고 실모도 많이 풀었고 독서는 수특수완 다 봤고 뭘 만나도 그래도...
-
'딥보이스'로 직장 성희롱 신고…음성위조 밝혀낸 지평 1
인공지능(AI)을 활용해 짧은 음성만으로 특정인 목소리를 흉내 내는 ‘딥보이스’...
-
국어 독서론까지 다 풀면 배가 ㅈㄴ 아프지 에반데 긴장되는건 아닌데
-
우우 0
개운해
-
살말 고민중이라 오르비에서 후기 보고 있는데 24년 후기글에 제3 인간형 이런 작품...
도함수 연속은 항상 원함수 미분가능
하지만 미분가능하다고 해서 도함수 연속은 아님
근데 저기서 조건이 도함수 연속이니 미분가능이니까 자연스레 원함수 연속
미분가능한데 도함수 연속이 아닌 케이스가 어떤게 있을까요?
f(x)= x^2sin1/x (x=/0)
0 (x=0)
?
도함수가 연속이면 원함수는 당연히 연속