미적분 출제 예상 (2)
게시글 주소: https://orbi.kr/00069739207
평가원 기출 문항 또는 잘 만들어진 문항의 특성 중 하나는
출제 의도에 부합하지 않는, 다시 말해 불필요한 작업을 피하는 것이
문제 풀이에 도움이 되는 것이라고 생각합니다.
S_1과 S_2를 직접 구하려고 하면 쉽지 않습니다.
그러나 선분 OT, 선분 OQ, 그리고 호 TQ로 둘러싸인 부분의 넓이를 x라 할 때
로 접근하면 쉽습니다.
한꺼번에 구하기를 포함해 문제가 원하는 대로 풀이를 이어가는 것이
원활한 마무리에 도움이 될 때는 평가원 시험지에서 어렵지 않게 찾아볼 수 있습니다.
2025학년도 대학수학능력시험 9월 모의평가 (미적분) 28번은
적분 퍼즐에다가
역함수 적분 약간,
그리고 주어진 적분 조건의 f'(2x)sin(ㅠx)를 g(x)-x로 작성하지 않는
불필요한 작업을 피하는 것 정도로 정리해 볼 수 있겠습니다.
만약 f'(2x)sin(ㅠx)를 g(x)-x로 바라봐야 했다면
문제에선 g(x)-x를 주었을 것이라 생각해 볼 수 있습니다.
적분 퍼즐이 아닌 역함수 적분에 초점을 두고자 했다면
다음과 같은 조건을 확인할 수도 있었을 것입니다.
역함수 적분에 초점을 두었다면 23 수능 29번이나
22 수능 30번 같은 형태였을지도 모르겠습니다!
sin(ㅠx)가 x=n (n은 정수) 일 때 0이기 때문에
x=n일 때 g(x)=x임을 활용해 역함수 적분을 간단히 처리할 수 있었는데
x=p이면 sin(x)=q일 때 sin(x)=q라고 x=p가 아님에 초점을 두고자 했다면
21 9월 21번의 향을 조금 담을 수도 있지 않았을까 생각해 봅니다!
2023학년도 6월, 9월, 수능은 15번에 귀납적으로 정의된 수열 추론
22번에 삼차함수 결정 (극한, 평행/대칭/회전이동+구간별, 변화율로 정의된 함수)
그리고 미적 4점에 삼각함수 극한 (도형) 이 출제되었습니다.
이후 세 유형 모두 힘이 빠지며 아래와 같이 비교적 생소한 문항이 출제되었습니다.
이후 2025학년도에 출제된 문항 중 마음에 드는 것이 다음과 같습니다.
세 문항을 아래의 문항과 함께 살펴보기 좋다고 생각합니다.
이러한 맥락에서 항등식의 양변 적분 출제를 조심스레 예상해 봅니다!
(19 6월 가형)
(19 수능 가형)
아래는 2022학년도 대학수학능력시험 (미적분) 24번을 활용한
항등식의 양변 적분 문항입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이감 엣지2차 1
ㅇ해가안되는거심.. 무슨 이런 기형적인 오답을
-
23313인데 6
경희대인문 가려면 어느정도 받아야할까요....중경 중에 가고싶은데 영어 3받으면 힘들겟죠....??
-
휴지로 코 막고 마스크 쓸까 약 먹을까
-
분명 뒤에 선지까지 봤으면 무조건 뒷선지 고를거같은데 1
앞쪽에서 손가락 걸고 나가는거 어케 고치지…
-
뭔가요?
-
학문에 도덕적 요구를 반영하면 배가 산으로 가버립니다. 도덕적 잣대, 도덕적...
-
또 주말엔 쉬느라 못봐서 이제야 푸네요 별개로 펜 크기를 줄여놓고,, 시험지...
-
평가원이 6,9모 전부 현대소설을 연계한적이 있나요? 2
작년에 6,9모 중 한 번만 현소 연계됐던 걸로기억하는데 올해는 고전이 한번...
-
해모 4-2 77점 나왔는데 이거 2등급은 되나요...
-
수학은 이제와서 실모 외에는 더 한다고 점수 바꾸기 글렀고 실수만 좀 잡아야할듯...
-
ebs국어모고 0
뒤로 넘겨야하는거 개빡치네 종이 들었다 놨다
-
일단 92 (시간 풀로 채움, -15, 30) 이고 문제 좋네요. 개인적으로...
-
생명 N제 한번 싹 풀려고하는데 올바원, 프로모터 중에 뭐풀까요? 최저라라 3등급...
-
재수하면서 정말 힘들었고 많은 일들이 있었는데 이제 독서실에서 인강 보면서 큭큭댈...
-
사설 국어 지문에서 물어보는 거하고 평가원, 수능에서 물어보는 거하고 차이가 있는 거 같음 7
웬지 모르게 사설은 디테일함을 물어본다면 평가원, 수능은 디테일함 약간에 전반적인...
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이번 칼럼을 통해 실전 모의고사를 통한 나만의 약점으 보완하는 방법을...
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
저는 올해도 상수 또는 직선구간을 갖는 함수 나와줬으면 하네요..분석글 좋아요 ㅎㅎ
2019학년도 대학수학능력시험 9월 모의평가 (나형) 21번
ㄴ 이런 느낌도 좋을 듯하네요
왠진 모르겠지만 비슷한 맥락에서 2017학년도 대학수학능력시험 (가형) 21번도 떠오르네요~~
마지막 문제 답이 뭔가요?
196입니다! 풀어주셔서 감사드립니다