덕코이벤트/수학 실모 배포 ANNIHILATION(공통+미/기)
게시글 주소: https://orbi.kr/00069672931
ANNIHILATION.pdf
ANNIHILATION 정답.pdf
**정오) 기하 29번 물음 BFF’ -> AFF’으로 수정
과하게 어렵습니다
과하게 어려워서 n제화 하시는것도 추천드리고
실모로 푸신다면 못 푼 문제는 있어도 봐야되는 문제 중에 못 본 문제는 없게, 운용에 초점을 두고 써보시는걸 추천드립니다
미적분 선택자 유의사항
29번 적분퍼즐 함수 실존여부는 모릅니다
전문 출제자가 아니라 그정도 능력이 없어서
평소 풀던대로 적분퍼즐답게 풀어주시길..
문제 정오사항 관련
문항을 전부 자체제작하고 검토해서.. 아주 신중히 계속 고쳤으나 정오사항이 있을 수 있어 이 게시글의 댓글이나 ‘ANNIHILATION’을 포함한 작성글(검색으로 찾을 수 있게)로 제보해주시는 분께 확인 후 소정의 덕코(문항당 2천덕정도? 제가 많이 가지지 못한 터라 이정도밖에 ㅎㅎ;)를 드릴 생각입니다
아마 없을거라고 생각은 하는데 이게 맘대로 되는 부분이 아니라서
이벤트
지금은 정답지만 올라가있고, 해설지는 11월 전으로 올릴 생각입니다
해설지가 올라가기 전에 작성된 ANNIHILATION의 풀이를 포함한 후기글을 작성해주신 분 중 제 판단 하 가장 맛있게 즐겨주신 분들께 소정의 덕코를 드릴 생각입니다 (근데 몇분이나 풀어주실지 모르겠어서 구체적인 양은 정해두지 않았는데,, 맘에 드는 글들에 남은 덕코를 적당히 다 나눠드리지 않을까 싶네요)
해설지는 사실 이미 다 써놨는데, 써주시는 풀이들 보고 더 나은 풀이를 포함한 해설지를 올리고 싶어서 나중에 올릴 생각입니다
*마찬가지로 글에 ‘ANNIHILATION’이 포함되어 있어야 합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
. 0
근데 난 편지를 써주기만 했던거 같은데 문득 친구한테 받은 편지가 있었던거...
-
만약에 애인이 생긴다몀 항상 껌딱지마냥 붙어댕길듯
-
3 년 전 후기 보니까 엄청 어렵고 양이 개빡세다라고 들었는데 샘이 너뮤 좋기만하고...
-
난 모쏠아님 7
이미 니지카랑 결혼해버려서
-
갈라면 어케해야댐 확통사탐으로 수학백분위 마지노선이 몇이에요? 국어 백분위98이고...
-
장점이 없는 삶 1
-
흑석반수생 2
갑자기 생각남
-
다들건강해랑
-
전 키빼몸 120 찍음 생담 쌤들도 막 정수기에서 물 마시는거보고 너무 말랐다하고...
-
의뱃 ㅈㄴ많아짐
-
성인 되서 안해봤다고 모솔이러면 저같은 진짜 모솔은 슬퍼합니다....
-
연애 안해봤는데 연애가 뭔줄 알고 하고 싶다는고임 연애가 뭐임??
-
안녕하세요 5
레전드 굇수입니다 내일 보죠
-
자려고 하는데 위에집에서 ㅈㄴ쿵쿵대면서 싸우는 소리 들림 3
자긴글렀다 과외숙제나한다
-
댓글 하나씩 남겨주면 5명 단위로 묶어서 추첨 한명만 연인 당첨 결과는 당첨자에게 대댓
-
어짜피 연애 못하는거 아니까 그냥 어떤 기분일지 상상하는거지 연애를 하는건,사랑을...
-
고백하나함 6
사실 나 성격이 좀 많이 안좋음
-
명문대 의치한약수 .. 옯평 개높아서 벽을 느끼고 공부하러 가겠읍니다..
-
어떤 이미지든 환영이야
-
다들 굿밤굿밤 3
내일까지만 공부 하면 일요일은 좀 쉬어갈듯 다들 화이팅해요 사랑합니다
-
아 모르겠고 빨리 12화 내놔~~~~~~~!!!!!!!
-
잔다. 2
자라. 캬캬.
-
25살 여자이고 어떤 선택을 해야할 지 모르겠어서 조언을 구해봅니다 코로나 시국에...
-
피아노 어렵다 0
양손 연주 못하겠어
-
남자라서 과외 입구컷 당해본분?
-
이름 뭐로 바꾸지 13
도로시로 갈아탈까
-
잠 8
따
-
프사 추천받아요 12
강평 누군가가 따라해서 전 다른걸로 해야겠어요 댓글로 사진 ㄱㄱㄱ
-
잠 4
ㅇㅇ
-
프사변경완료 5
다시 민지단 복귀
-
운동 하루에 30분 러닝이라도 뛰셈 생각보다 몸이 많이 안좋아지더라 건강이 최우선임
-
다시 예전처럼 하자 다시는 오늘처럼 살지 않으리
-
수시러 최저 맞추는 친구가 과탐하다 사문 듣는데 ㄹㅇ 그냥 재밌는 유튜브보는느낌?...
-
남들과 다른 길을 걷는다
-
3차긴한데 mri까지 찍었는데 다른 개인병원에서는 만져보고 바로 뭔지 알더라.....
-
고1때 두명 썸탔고 한명은 학기초에 소개받았었는데 연락을 서로 먼저안해서 자연스럽게...
-
질문좀해주셈 0
ㅇㅇ...
-
전독시 실사화되더라 11
유튜브에서 예고편봤는데 그거가 실사화가 가능한가 근데
-
.
-
자고일어나서마저할수도
-
걍 예쁘잖아
-
용기내서 그녀에게 데이트신청 해볼까
-
애니프사의 효능 4
성적이 오른다←이거 ㄹㅇ임
-
나의 세상이 무너졌어 ㅠㅠ 나만 진심이었어
-
https://orbi.kr/00072144208/%EC%9D%B4%EA%B1%B0%...
-
이미지를 그려주기임뇨 17
심심해서 자기 전까지 선착순으로 그려드림뇨 잘 모르는 분은 첫인상을 제 맘대로 그릴거에요
-
공부 ㅈㄴ 잘할거같긴함
-
그래도 아직까진 한국사회에서 낫베드죠?
-
받는 영상 있었던거 같은데 그때는 그사람이 걍 고능해서 그런거지라 생각했었는데...
-
덕코 받습니다 0
덕코주세요
낼 풀어봐야겠다
12번 14번 어떻게푸나요
12번은 g2(t)로 특정안되는 f부분이 있을텐데
미분계수조건으로
y=|a^x-b|에서 간격 구하고 f에 맞게 바꿔주면
자연수조건때문에 되는 케이스가 하나밖에 안나와요
14번은 (1,2)구간에서 함수 개형이
최대가 되냐 최소가 되냐에 따라 두개가 생길텐데
a1=0이고 a2, a3, a4는 (1,2)구간 적분값이 최대일 때 0~n 적분값이 최대,
a5 a6 a7는 (4,5)구간 적분값이 (1,2)구간 -p배가 되니
(1-p)((1,2) 적분값)이 최대가 될 때, p>1조건에따라 (1,2) 적분값이 최소일 때 경우고
a8 a9 a10은 마찬가지로 (p^2-p+1), (1,2) 최대일 때..
(1,2)적분값 최댓값을 M, 최솟값을 m이라하면
an 나열한게 0,M,M,M,m,m,m,M,M,M…
S3n이 등차수열이라했으니 쉽게생각해서 S9-S6 = S6-S3이고 M,m으로 나타내면 M+M+m=m+m+M, 즉 M=m
최대최소가 같으려면 c라는 기울기가 (1,2) 구간에서 (1,루트3*a), (2,루트3*a*p)를 딱 이어주는 기울기가 되면 경우가 나눠지지 않고 최대최소가 같아지겠죠
나머지는 계산..