스포) 샤인미설맞이 손풀이+간단한 해설
게시글 주소: https://orbi.kr/00069655521
주말엔 쉬는편이라 이제야 봤네요
간단한 리뷰를 하자면 킬러(15번)가 진짜 아름다운 문제였다고 생각
준킬러는 되게 쉽지 않았나 싶네요
1컷 88?(미적분)
f(k) f(-k) 전부 4^x면 곱이 2/9가 나올 수 없겠죠
매일 하던대로 넣고 벅벅 계산으로 마무리
g, h모두 f 최고차를 따라가니 최고차 대충 잡아놓고 무한대극한으로 최고차 계수 구하고,
x->1조건에서 g-h = 2f(x)인걸로 f(x) 식 작성 마무리
구하는것도 2f(4)라고 바꿔 보면 되겠죠
홀짝나눠서 한쪽은 그냥 상수*6, 한쪽은 제곱 시그마 합 공식을 벅벅
접선끼리 평행이동(x로 3만큼) 관계에 있어서 x절편 평균값이 -1이다로 놓고 직선 구해서 다시 함수로 돌아가서 함수 확정해주면 끝
14번 도형치곤 사설에 절여진건지 너무 쉬웠다는 느낌?
각 점이 전부 원점에서 거리가 같아서 원주각-중심각 관계로 Q든 P든 x,y좌표값 비가 코사인 조건에 의해 특정되는거만 발견하면 아주 쉽게 풀리죠
너무 어렵고 아름다운 문제
(나)조건에서 f(f(1)),f(f(2)),f(f(m))이 전부 같고 f(자연수) 값들 중 최소임을 먼저 느껴야되고,
최고차 음수면 계속 값이 작아지니 (나)조건을 만족시킬 수가 없고,
양수일 때는 x = f(1), f(2), f(m)을 지나고 y좌표가 대충 무언가라고 두고 다시 생각해보면,
f(1)이 1보다 크면 f(1)이 f(f(1))보다 반드시 작아지니 모순, f(1)=1
f(1)이 1이니 대충 무언가로 둔 y값도 1
또한 이러면 f’(1)>0인 개형이 되니 f(m)>f(2),
f(m)~f(2) 간격이 1보다 크면 그 사이 어떤 값에서 f(자연수)의 최솟값이 생기므로 안됨, f(m)=f(2)+1, 조건에 따라 f’(1) = 15/2
위에 작성한 식에 2대입해서 f(2) = ~~, f’(1)값으로 연립하며 마무리
(나눠주는 게 가장 깔끔한듯)
홀수인 거에 짜릿하게 반응이 오면 쉽게 풀리죠 (홀수 되는 경우는 구간설정상 t=-3k/2밖에 없다)
열린구간이라 구간경계값이 최대/최소일 수 없음을 느끼고,,
{f(x)}^2이라는 함수의 극대/극소가 최대/최소가 될 수 있다로 두면 어렵진 않게 풀리죠
개수니까 부등호조건에서 n(A3) = 3이겠죠
A짝수, A홀수의 원소개수 특징을 파악하면 A5, A10이 겹치는 원소가 두 개 있어야 한다, 0은 무조건 겹치니 다르게 겹칠 수 있는 두 케이스에서 각각 값 구하고 더해주면 끝
15번이 진짜진짜 어려웠어서 22번은 좀 쉬운 느낌이네요
라이프니츠를 쓸 경우 d?/dt, 저같이 함수로 두면 ?‘(t)를 안 구해도 되는 문제였네요
a2 a5가 같아야되고 케이스 3개나오겠죠
되는 경우 하나밖에 없고 계산벅벅 마무리
0~4까지 함수가 =<x면 된다를 느끼면 나머지는 어렵지 않죠
|x|+t 위 길이니까 그냥 y값 차로 봐도 무방하고 이걸로 식 세워서 적분으로 벅벅
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강K 11회 0
90 독서 4틀 시간부족으로 가나 두 문제 못 풀었당 ㅠㅠ
-
나올까?
-
독서 5번 언매 36번 틀림
-
3모 97.51 (국수 백분위 90, 98.47) 6모 97.75 (93,...
-
약대 0
어디든 상관 없으니까 제발 약대 붙여줘
-
쉬는시간에 딴 교실로 대피하시나요 아님 그냥 푸시나요
-
'아동 성범죄' 혐의로 복역했다 지난 2020년 출소한 조두순이 최근 이사를 한...
-
스포주의! 샤인미 X 설맞이 모의고사 후기 (조언 부탁드립니다) 6
저는 어떻게 풀었는지 공유해드리고싶어서 올려봅니다 중간중간 남은 시간 기록해뒀는데...
-
오학실 3
오늘의학교실모 국어 강k 개자살독서론어휘매체8점나가서진지하게죽을까고민함 수학 강x...
-
급한데 0
오늘 관독에서 더프 쳐서 아직 답지 못받았믄데 혹시 국어 답좀 알려주실분.....
-
전체적으로 평이한 난이돈데 도형왤케어려움? 급발진오지네 코사인 활용 감도 안잡힘
-
어허 어헣엏ㅎ 개좋네
-
밤 새서 공부할까요 많이 밀려서 고민중
-
15, 30 틀려서 92점입니다 14번은 90도 회전이 보여서 기하적으로 풀었습니다...
-
언미생지 교차하면 어디까지 가능?
-
외국인 형들이랑 친해짐 4대4 하고 귀가..
-
통역사고 크게 쳐서 이거 까딱하면 퇴사각 아님 지방발령 각일듯 ㅋㅋㅋㅋ 통번역의...
-
한번쯤은 뒤가 없이 달리는것도 멋있잖아
-
현대시: 단가육장 현대소설: 조웅전? 서대주전? 고전시가: 서울 1943년 어쩌구...
-
매주 신청하는걸로 알고있는데.. 택배비포함 주당 3~4정도 나오려나요?

글씨만 봐도 수학 고수인게 느껴지는 마법