재밌는 문제 풀어보셈요(10.17)(30000덕)
게시글 주소: https://orbi.kr/00069521773
생각보다 덕코가 많아져서 시원하게 한 번 가겠습니다
제가 아껴두었던 조합문제입니다
난이도 : 4/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ 볼 때마다 토 나옴 BDSM에서 S 담당일 듯
-
해지면 자 6
구름에 해가 확실히 가렸다
-
지금까지 살면서 가장 어려웠던 고찰 중에 하나는... 2
다중우주와 끈 이론과의 상관관계였음 이걸 넘어설 수 있는 것은 거의 없다고 해도 될...
-
저는 실모 42-50와리가리치는데 가끔 개념서 펼쳐놓고 개념읽음 현강다님
-
작년이랑 올해랑 많이 바뀌었나요? 둘다 풀어보신분 답변 부탁드립니다!
-
검색목록에 있길래
-
오늘도 0끼 2
방금 양갱하나 줏어먹음
-
9모 95(화작) 92(확통) 2컷 1 2(쌍사) 10모 95(화작) 88(확통)...
-
바로 나.... 실모를 풀어도 뭐하니 점수가 ㅈㄹ낫는데
-
파일앱에다 필기했는데 싹다 사라졌어요;;; 이거 복구 못하나요??
-
알카에다나 IS 특채 영입 제안 올 듯 ㅋㅋㅋㅋ
-
시간이 많이는 없어서 이감이나 상상중에 선택하거나 반반 이렇게 풀어야할거같은데 어떤걸 추천하시나요?
-
라는 소문 퍼졌으면 좋겠다 진짠지는 모르겠고
-
기본 260정도는...ㅡㅡ 왜 노트북은 해마다 가격이 오를까요
Hug...
갳우좀
(2/5)^n
아쉽군요... 매우 다릅니다!
찍맞실패
풀긴풀었는데 답 식이 너무 복잡해서 확신이 하나도 안드네요..
좀 복잡하긴 해요 ㅋㅋ n=3일때만 구해서 보내주세요 그걸로 확인할게요
1/5 * (4/5)^(3n^2-7n+4) * (3/4) ^(8n-8) * (2/3)^4 * (1/2)^2n(n-1) 나오는데 아니겠죠..?
아니에용..
(1/5)*(2/5)^4*(3/5)^(8n-16)*(4/5)^(3n^2-14n+16)*(1/2)^(2n^2-2n) 이 나왔어요
거의 근접한데 아쉽네요..

저도 계산해봤더니 이렇게 나오네요거의 비슷하신데 약간의 오류가 있는것 같아요
길이가 n인 정사각뿔에 사용된 A, B의 수
A : 2n(n + 1)(n - 1)/3 개
B : n(2n² + 1)/3 개
정사각뿔의 표면을 구성하는 면의 수
A : 2n(n - 1) 개
→ 1개 × 2n(n - 1)
B : n(3n + 2) 개
→ 4개 × 1
+ 3개 × 4
+ 2개 × 8(n - 2)
+ 1개 × (3n² - 14n + 16)
죄송해요... 검토해봤더니 제가 계산과정에서 (4/5)^(3n^2-14n+24)로 잘못 구했네요;;
맞습니다!
제가 생각한거에 비해 간단히 푸셨네요.. 더 분발해야겠군요
1/5 * (4/5)^(3n^2-6n+4) * (3/4) ^(8n-12) * (2/3)^4 * (1/2)^2n(n-1) 맞나요?
윗댓이 정답이에요! 죄송합니다 ㅠ
위 댓하고 식은 똑같은데 너무 늦게 풀었네요..
다음에도 화이팅!

확률 문제가 아니라 수열 문제로 다듬어서 내도 좋을 거 같네요그것도 고려해봐야겠군요...
갠적으로 A와 B배열 구하는 것도 오래걸릴거라 생각해서 마무리를 너무 얕게 만들었던 것 같네요 ;
확실히 공간지각능력이 요구되는 문제인 만큼
조금만 꼬아서 내도 난이도가 꽤 높아지지 않을까 합니다