재밌는 문제 풀어보셈요(10.16)(1500덕)
게시글 주소: https://orbi.kr/00069510928
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주말 의대반 0
가보신 분? 물어볼게 좀 있어서
-
영어 0
션티 쌤 커리 타는데 키스로직 vs 키스키마 베이직 고2입니다
-
설의 포기한사람 5
엄마랑 뒤지게 싸우고 엄마는 충격으로 병원갔다네용
-
내일보자 2
오늘 그만 본다는 말은 아니고
-
재밋을듯
-
님들 그거 알았음? 24수특문학 '원미동 시인'에 몽달 씨 두들겨 맞을 때 방관한...
-
옯컹컹컹 13
&(&(&(&&@@###*%*^$$ 챱챱챱
-
중경시부터는 차마 내가 넘볼수조차 없는 너무 큰 벽이라 열등감도 느끼지 못했음
-
그럼내년에.. 이게아닌가?
-
응 3수 ㅁㅌㅊ?
-
급식시간 2
교실에 혼자 앉아 먹는 도시락..
-
말그대로 인강 다듣고 개념끝냈으면 국어처럼 하루에 마더텅3지문 이런식으로 쭉...
-
저도 현역때 합응 연고전 영상 다 관심없음 누르긴 함 4
근데 입학하고 몇주정도까진 그정돈 아녔는데 나름 냥뽕차있었는데.. 물론 1달을 못가긴 했지만
-
넌 왜 밥도 맨날 혼자 먹어?친구 없어?
-
칼국수 먹고샆다 3
ㅠㅠ
-
ㅋㅋ현실은..
-
와퍼먹고싶다 13
ㅋㅋㅋ와퍼진짜맛잇는데감자튀김도같이먹고싶다.수학2개재미없다수학2를해야하는걸까수학2한문제...
-
가려야돼
-
과하게 남성성을 어필하시던 분이 있어서 무조건 남자일 줄 알았는데 프로필...
-
님들 단발 중단발 장발 13
저는 중단발이긴합니다.
-
반어법이 ㅁ
-
줫같은 밴픽은 시나리오에 없었지... 왜 -빅- 이새끼랑 코씨가 같은 밴픽에 있는거냐고..
-
지문싹읽고 문제 싹푸는?이러면 내용을 안까먹나요?문학처럼 푸는게...
-
되겠죠..? 25일에 어차피 학교 가야되는데 그날 가도 3월 전에 자퇴 처리...
-
클릭하면 바이러스 걸리나요?
-
여기에서 25학년도 수능준비했어요 궁금하신점 답변해 드릴게요
-
나 닉변하고 싶은데 덕코 빨리 모으는 방법좀요.. 15
이거 ㅂㄱ을 상대로 전체 도발 날린거 같아서 조금 쫄리는데
-
처녀의 반대기때문
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
ㅁ프ㅓ,ㅑㅏ찌ㅒㅖ >":?/;.마ㅡ,ㅑㅣoswjfdeu8 9rvc 14
jisrfdegktolup;9/'gijolp0;/srw8um9kjsimkgreflo;...
-
반동 심해서 에임 다 빗나간다....
-
어그로 좀 그만 끌어라 다들 그게 중요한 게 아니다 9
진짜 중요한 건 바로 말 안해도 알거라고 봄
-
이따구 밴픽 보고도 하하호호 우리는 즐거워요 하하호호 사실 젠지를 만나기...
-
ㅇㅈ 10
한번 더! 한번 더!
-
화가 나는 짤 5
-
문제가 올해 해결된다고 하면 대량 유급시킨다는 말이 있던데… 정상적으로 대학생활...
-
07년생이란 3
2007년에 태어낫다는 것
-
고민된당 우
-
딴동내앤 두부두루치기라는 음식이 없음?
-
ㅇㅈ 6
에헤이~
-
년도별로 되어있는거요 년도별로 쫙 되있는거 보고싶어서ㅜㅜ 혹시 아시는거 있으면...
-
달리기하면 우울한거 싹사라짐
-
ㅇㅈ 10
그런건 없어
-
ㅇㅈ하거 자러감 20
오늘도 늘 보던거
-
ㅇㅈ 6
-
아무런 뜻이 없소이다
-
과탐 가산 좀 크다는데 과2하기엔 반수라 시간부담이 클거같음 작수 과탐 ㅈ박기도 했고..
-
잘생긴 성인 남자 아이돌한테 수치심을 줘보고싶다 ㄹㅇ 도파민 폭발
-
저 몇살이예요? 2
만으로
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다