재밌는 문제 풀어보셈요(10.16)(1500덕)
게시글 주소: https://orbi.kr/00069510928
간단한? 정수 문제입니다.
난이도 : 2.5/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저랩 노프사 2
좆고수들 많은듯요
-
투투 도전해볼까??
-
저녁 5
-
현역 공부시간 0
학교에서 자습 거의 못하고 하루에 공부시간 6시간정도이면 너무 적은가요?
-
애플워치 울트라 0
지를까
-
이투스 언매 4
이투스 언매 선생님 좀 추천해주세요
-
오늘 같은 날 한강으로 피크닉을 가야하는데.. 하..
-
11월꺼는 공통 30문제라 생각하고 풀어볼 생각인데 풀만한가?
-
정병호 레알비기너스 1달 안에 들은 후(공통만) 5~6월 프로메테우스 + 패파...
-
신발 골라주세요 0
[보유한 신발] 반스 어센틱 레드 컨버스 척 70 로우 컨버스 척 70 하이 반스...
-
안녕하세요, 수능 국어를 가르치는 쑥과마늘입니다. 많은 분들이 국어에서 '시간...
-
한완수 실전은 0
확실히 어렵다
-
평가원 #~#
-
지구vs생윤 0
이과계열 노리고 있구요 24수능 지구과학 공부했고 평소 2후 3초정도 나오다가...
-
좋은 선택일까요 가게 되면 적어도 상경 or 이과 도전할 것 같습니다
-
문제지 원글 : https://orbi.kr/00072669224 안녕하세요!...
-
탄핵 인용된다고 가정하면 60일 이내 대선인데 60일째 날이 6월 3일(6월...
-
재수고민 2
지금 언매확통정법사문 공부중입니다 약대를 목표로하고 있는데 (개국할 생각이라서...
-
작수 찍맞없이 22,28,29,30틀 80점인데 미적이랑 확통중에 붜가 나을까요?...
-
소나기는 소를 두고 내기를 했다 하여 소내기>소나기의 변화를 아주머니는 아기주머니를...
-
1컷 96이어도 만점 백분위 100 나오겠네 상위 1%가 대략 4~5천명일텐데...
-
뒷이야기는 약 19임
-
뻐큐 순화한 거 존나 아쉬운데 두번째 그림 ㅈㄴ 귀여워서 맘에 듦
-
윤동주 부끄러움 키워드 발견, 기형도 발견, 안도현 발견 마광수가 없으면 이 둘은...
-
그냥 메가가 나랑 안맞음
-
수학 n제 추천 1
한석원쌤 4의규칙 풀고 있는데 현우진쌤 드릴 가기전에 하나 더 풀고 싶은데 뭐가 좋을까요?
-
직독직해로 하는편임?? 아님 어케 하는편임? 직독직해로 하니까 글 이해도 잘 안되고...
-
오르비 노잼 2
-
개노잼
-
만우절 롤 못참긴 하는데 일이 밀린 상태임
-
전설의 자리 공석
-
대부분의 강사들이 영어 해석은 직독직해가 기본이라고 주장하고, 가르친다 하지만,...
-
24수능 경제 42점 12
1컷 45점 2컷 40점 이제 인강 들으면 1등급도 맞을 수 있겠지...?
-
학교에서 본거 0
학교에서 SBS 도시의 법칙, TV조선 아시아 헌터 틀어준적 있니?
-
현역때 사탐런해서 생명,화학->생윤,사문으로 갈아탔었습니다. 6모때는 생윤 만점...
-
여러분의 고충을 압니다. 해석이 안되고 해석 되어도 뭔 소린지 모르겠고 답은 왜...
-
작수 4인데 브릿지 보면 40점대 초반까진 나오는데 강사들 모고만 풀면 30점...
-
나중에 영어 고정1 목표일 때 경찰대 풀어도 ㄱㅊ? 6
경찰대 영어 풀어도 ㄱㅊ나? 친구가 나한테 버려서 나중에 영어 좀 치게 되면 고정1...
-
저 남친생겼어요 11
으흐흐
-
작수 화작 3등급인데 국어공부 6모 이후부터 해도 될까요? 12
대학수업 들으면서 국어공부하려니 별로 공부하는거 같지도 않고 그래서요. 6모 전까진...
-
자 지축을 박차고 자 포효하라 그~대 조 국의 영원한 고동이 되리라 우리학교 응원가 쌈뽕하다❤️
-
작년에 물1지1하다가 물1지2 하려고 했는데 올해 지2 상황이 작년보다 엿된 것...
-
@ㅅㅅㅎ 5
누가 찐인지 대결 ㄱㄱ
-
이런 차림 어떻게 보세용?
-
트러스 난이도 0
진짜 5-12 18-20임? 그럼 1,2등급은 살필요럾고 사실 그 이하등급대도 굳이 아닌가 후기점요
-
33111 문과임 화작확통사탐 낮3 개 낮3 문제는 재수때에도 국어 수학 오른 적...
-
음 역시예쁘군
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
통일연세 전진공대 발광전전 우리가 누구? 비전식스! 우리가 누구? 비전식스!...
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다